Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumors

计算机科学 卷积神经网络 模态(人机交互) 人工智能 深度学习 联营 特征(语言学) 机器学习 人工神经网络 语言学 哲学
作者
Junming Jian,Wei Xia,Rui Zhang,Xingyu Zhao,Jiayi Zhang,Xiaodong Wu,Yongai Li,Jinwei Qiang,Xin Gao
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:121: 102194-102194 被引量:23
标识
DOI:10.1016/j.artmed.2021.102194
摘要

Malignant epithelial ovarian tumors (MEOTs) are the most lethal gynecologic malignancies, accounting for 90% of ovarian cancer cases. By contrast, borderline epithelial ovarian tumors (BEOTs) have low malignant potential and are generally associated with a good prognosis. Accurate preoperative differentiation between BEOTs and MEOTs is crucial for determining the appropriate surgical strategies and improving the postoperative quality of life. Multimodal magnetic resonance imaging (MRI) is an essential diagnostic tool. Although state-of-the-art artificial intelligence technologies such as convolutional neural networks can be used for automated diagnoses, their application have been limited owing to their high demand for graphics processing unit memory and hardware resources when dealing with large 3D volumetric data. In this study, we used multimodal MRI with a multiple instance learning (MIL) method to differentiate between BEOT and MEOT. We proposed the use of MAC-Net, a multiple instance convolutional neural network (MICNN) with modality-based attention (MA) and contextual MIL pooling layer (C-MPL). The MA module can learn from the decision-making patterns of clinicians to automatically perceive the importance of different MRI modalities and achieve multimodal MRI feature fusion based on their importance. The C-MPL module uses strong prior knowledge of tumor distribution as an important reference and assesses contextual information between adjacent images, thus achieving a more accurate prediction. The performance of MAC-Net is superior, with an area under the receiver operating characteristic curve of 0.878, surpassing that of several known MICNN approaches. Therefore, it can be used to assist clinical differentiation between BEOTs and MEOTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty完成签到,获得积分10
刚刚
1秒前
李健的小迷弟应助cloudss采纳,获得10
2秒前
王博士完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助任虎采纳,获得10
4秒前
6秒前
7秒前
7秒前
7秒前
古月完成签到 ,获得积分10
8秒前
8秒前
马腾龙完成签到 ,获得积分10
10秒前
123_完成签到,获得积分10
11秒前
王大可发布了新的文献求助10
11秒前
叶琳发布了新的文献求助10
13秒前
15秒前
pumpkin发布了新的文献求助10
17秒前
弄香完成签到,获得积分10
18秒前
闹心发布了新的文献求助10
19秒前
19秒前
12完成签到,获得积分10
20秒前
果冻发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
22秒前
cloudss发布了新的文献求助10
22秒前
22秒前
23秒前
Jasper应助美丽秋蝶采纳,获得10
23秒前
人间天堂发布了新的文献求助10
24秒前
爆米花应助秀丽的大门采纳,获得10
25秒前
26秒前
26秒前
hxy发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
王0535发布了新的文献求助10
27秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046976
求助须知:如何正确求助?哪些是违规求助? 3584785
关于积分的说明 11393078
捐赠科研通 3312136
什么是DOI,文献DOI怎么找? 1822469
邀请新用户注册赠送积分活动 894459
科研通“疑难数据库(出版商)”最低求助积分说明 816290