高光谱成像
正规化(语言学)
张量(固有定义)
计算机科学
全色胶片
人工智能
全变差去噪
迭代重建
结构张量
数学
计算机视觉
算法
模式识别(心理学)
图像(数学)
几何学
作者
Zhenghui Liang,Yang Xu,Liang Xiao,Zhihui Wei
标识
DOI:10.1109/igarss47720.2021.9554846
摘要
In this paper, we propose a novel tensor-based approach to improve the reconstruction performance for dual-camera compressive hyperspectral imaging. We formulate a coupled tensor decomposition model to maintain the consistency of the spatial structure of the HSI and the panchromatic image. We introduce a regularizer over the core tensor to collaboratively promote global spatial-spectral correlations in HSI. Besides, we incorporate an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure of the HSI. Then the alternating direction method of multipliers (ADMM) algorithm is applied to the optimization problem. Experimental results on a public dataset demonstrate the superiority of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI