Litho-aware redundant local-loop insertion framework with convolutional neural network

平版印刷术 计算机科学 进程窗口 卷积神经网络 启发式 加速 杠杆(统计) 过程(计算) 计算机工程 并行计算 人工智能 操作系统 艺术 视觉艺术
作者
Tong Qu,Yibo Lin,Tianyang Gai,Xiaojing Su,Shuhan Wang,Bojie Ma,Yajuan Su,Yayi Wei
标识
DOI:10.1117/12.2601685
摘要

With the VLSI technology shrinking to 7nm and beyond, the Redundant Local Loop (RLL), also known as via pillar, becomes a promising candidate of redundant via insertion due to its compatibility with the unidirectional layout style. Existing RLL insertion approaches only leverage rule-based heuristics for manufacturing constraints, which can no longer obtain a large enough Process Window (PW) in advanced technology nodes. It is imperative to develop new techniques to optimize lithography process window while inserting RLL to achieve a good yield. In this paper, we propose a machine learning-based litho-aware RLL insertion framework. Conventional lithography simulation requires tremendous computational resources to evaluate the lithography quality accurately, which is not feasible for process window exploration. We formulate the lithography simulation as a regression task and develop a customized Conventional Neural Network (CNN) architecture to predict the Depth of Focus (DOF), a standard metric for evaluating process window. We propose a complete ow for litho-aware RLL insertion based on the CNN model for process window evaluation. The commercial lithography simulator evaluates the effectiveness of the proposed framework. Experimental results demonstrate that our lithography model can predict the DOF with high accuracy and generalize well on unseen patterns while achieving orders of magnitude speedup compared to conventional lithography simulation. Our litho-aware RLL insertion framework can effectively improve the lithography process window with comparable runtime and insertion rate compared to the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刀刀刀发布了新的文献求助10
1秒前
3秒前
5秒前
8秒前
9秒前
高兴吐司完成签到,获得积分10
11秒前
深情安青应助自觉的凛采纳,获得10
11秒前
1111完成签到,获得积分20
12秒前
动听鞅完成签到,获得积分10
12秒前
mmyhn应助慈祥的千青采纳,获得10
13秒前
14秒前
14秒前
刀刀刀完成签到,获得积分10
15秒前
王铭卓完成签到,获得积分10
17秒前
于彤发布了新的文献求助10
19秒前
田様应助小西贝采纳,获得10
20秒前
牧长一完成签到 ,获得积分0
20秒前
今后应助京阿尼采纳,获得10
23秒前
24秒前
栖梧砚客完成签到,获得积分10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
zho应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
坐下喝茶完成签到 ,获得积分10
30秒前
徐团伟关注了科研通微信公众号
33秒前
34秒前
gggggd完成签到,获得积分10
34秒前
赘婿应助栗子采纳,获得10
34秒前
共享精神应助深林盛世采纳,获得10
34秒前
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846880
求助须知:如何正确求助?哪些是违规求助? 3389345
关于积分的说明 10556961
捐赠科研通 3109741
什么是DOI,文献DOI怎么找? 1713874
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164