The stochastic decision making framework for long-term multi-objective energy-water supply-ecology operation in parallel reservoirs system under uncertainties

多准则决策分析 数学优化 计算机科学 托普西斯 期限(时间) 供水 功能(生物学) 模拟退火 运筹学 数学 环境科学 量子力学 进化生物学 生物 环境工程 物理
作者
Zhe Yang,Yufeng Wang,Kan Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115907-115907 被引量:16
标识
DOI:10.1016/j.eswa.2021.115907
摘要

The long-term multi-objective reservoir operation (LTMORO) involving multiple competitive goals such as energy, water supply and ecology protection is usually implemented under uncertain and changeable environment. Conventional methods usually obtain trade-off solutions and select most preferred one by multi-criteria decision making (MCDM) under deterministic environment. However, these methods are difficult to handle real-world reservoir system where multiple uncertainties exist in criteria performance values (PVs) and weights (CWs). In this paper, framework for solving reservoir operation and MCDM problem under various uncertainties is developed. A novel multi-objective method based on shuffled frog leaping algorithm (SFLA) is proposed to obtain high-quality trade-off solutions. Besides, hybrid utility forms based on TOPSIS, grey correlation analysis (GCA) or other models are impacted by subjectivity of combination coefficient, resulting in extra uncertainties for MCDM. To this end, the stochastic multi-criteria acceptability analysis (SMAA) model is developed by constructing new utility function based on SMAA-2 and modified GCA. The modified GCA helps to offset the uneven distribution problem in conventional version and enhance differentiation of utility function in SMAA-2. Moreover, deterministic CWs are obtained based on minimum deviation principle and two types of stochastic CWs following probability distributions are used to estimate CWs uncertainty. The risk caused by uncertain information propagating from PVs and CWs to decision results is also quantified. Finally, efficiency of established framework is tested by conducting three numerical experiments compared with deterministic GCA and SMAA-2. Results indicate that, compared with deterministic models, the novel framework provides decision maker with more reliable decision support and quantified risk information. The novel SMAA-GCA model produces relatively high probabilities for solutions to obtain their respective ranks compared with that of SMAA-2. It is effective to reduce impact of complex uncertainties on MCDM for LTMORO under stochastic environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芥末奶半糖加冰完成签到,获得积分10
刚刚
刚刚
1秒前
orixero应助北落采纳,获得10
1秒前
change249发布了新的文献求助10
2秒前
小徐801完成签到,获得积分10
2秒前
Imwang完成签到,获得积分10
2秒前
3秒前
秧木发布了新的文献求助10
3秒前
4秒前
Hello应助科研小白采纳,获得10
4秒前
4秒前
lukescholar发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
自由的语柳完成签到,获得积分20
7秒前
李彦完成签到 ,获得积分10
9秒前
CodeCraft应助元谷雪采纳,获得10
9秒前
希望天下0贩的0应助tangBin采纳,获得10
9秒前
小奶狗发布了新的文献求助10
9秒前
鳗鱼没完成签到,获得积分20
10秒前
大鱼大鱼发布了新的文献求助10
10秒前
10秒前
naturehome发布了新的文献求助10
10秒前
mo发布了新的文献求助10
11秒前
11秒前
12秒前
结实的泥猴桃完成签到 ,获得积分10
12秒前
SciGPT应助SZY采纳,获得10
12秒前
12秒前
zhangsan发布了新的文献求助10
12秒前
大个应助Anderson123采纳,获得10
13秒前
小二郎应助Anderson123采纳,获得10
13秒前
今后应助Anderson123采纳,获得10
13秒前
爆米花应助Anderson123采纳,获得10
13秒前
共享精神应助Anderson123采纳,获得10
13秒前
CipherSage应助Anderson123采纳,获得10
13秒前
情怀应助Anderson123采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809509
求助须知:如何正确求助?哪些是违规求助? 3354044
关于积分的说明 10368403
捐赠科研通 3070309
什么是DOI,文献DOI怎么找? 1686150
邀请新用户注册赠送积分活动 810855
科研通“疑难数据库(出版商)”最低求助积分说明 766384