Identifying shoplifting behaviors and inferring behavior intention based on human action detection and sequence analysis

动作(物理) 计算机科学 人工智能 序列(生物学) 心理学 社会心理学 遗传学 量子力学 生物 物理
作者
Siyeon Kim,Sungjoo Hwang,Seok Hwan Hong
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:50: 101399-101399 被引量:20
标识
DOI:10.1016/j.aei.2021.101399
摘要

• Identifying abnormal behaviors affecting public safety such as shoplifting. • Framework based on detection and sequence analysis of human actions. • Better inference of the intentions underlying abnormal behaviors. • Enhancing public safety by identifying abnormal scenarios rapidly and efficiently. Identification of abnormal behaviors affecting public safety (e.g., shoplifting, robbery, and stealing) is essential for preventing human casualties and property damage. Many studies have attempted to automatically identify abnormal behaviors by detecting relevant human actions by developing intelligent video surveillance systems. However, these studies have focused on catching predefined actions associated explicitly with the target abnormal behavior, which can lead to errors in judgment when such actions are undetected or inaccurately detected. To better identify abnormal behaviors, it is essential to understand a series of performed actions to capture behaviors’ pre- and post-indications (e.g., repeatably looking around and spotting CCTVs) and infer the intentions underlying such behaviors. Thus, in the present study, we propose a framework to identify abnormal behaviors through deep-learning-based detection of non-semantic-level human action components segmented with a window size of several seconds (e.g., walking, standing, and watching) and performing sequence analyses of the detected action components to infer behavior intentions. Then, we tested the applicability of the framework to the specific scenario of shoplifting, one of the most common crimes. Analysis of actual incident data confirmed that shoplifting intentions could be effectively gauged based on distinct action sequence features, and the intention inference results are continuously updated with the accumulated series of detected actions during the course of the input video stream. The results of this study can help enhance the ability of intelligent surveillance systems by providing a new means for monitoring abnormal behaviors and deeply understanding the underlying intentions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
复杂的凝冬完成签到,获得积分10
刚刚
阿阿阿阿冀完成签到,获得积分10
1秒前
今后应助Wiesen采纳,获得10
1秒前
zz发布了新的文献求助10
1秒前
晚风完成签到,获得积分20
2秒前
Marita发布了新的文献求助10
2秒前
amwlsai发布了新的文献求助10
2秒前
Akim应助欢呼的以蓝采纳,获得10
3秒前
3秒前
酷波er应助从容的方盒采纳,获得10
3秒前
4秒前
Liou应助zhangnan采纳,获得10
4秒前
ygl0217发布了新的文献求助10
4秒前
薇子完成签到,获得积分10
4秒前
科研通AI5应助瀚森采纳,获得10
4秒前
rrr发布了新的文献求助10
4秒前
乐观荔枝完成签到,获得积分10
4秒前
qwerty发布了新的文献求助30
4秒前
5秒前
5秒前
栗子完成签到,获得积分10
5秒前
呆鸥完成签到,获得积分10
5秒前
搜集达人应助Yun yun采纳,获得10
5秒前
大胆砖头完成签到 ,获得积分10
7秒前
7秒前
fed完成签到 ,获得积分10
7秒前
科研通AI5应助Tovey采纳,获得30
7秒前
hgc发布了新的文献求助10
8秒前
单色完成签到,获得积分10
8秒前
8秒前
熙悦完成签到 ,获得积分10
8秒前
9秒前
LCC发布了新的文献求助20
9秒前
9秒前
热情南松完成签到 ,获得积分10
10秒前
10秒前
Wiesen发布了新的文献求助10
10秒前
阿克完成签到,获得积分20
10秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978