DWIE: An entity-centric dataset for multi-task document-level information extraction

共指 计算机科学 信息抽取 自然语言处理 图形 人工智能 情报检索 任务(项目管理) 基本事实 公制(单位) 注释 分辨率(逻辑) 理论计算机科学 运营管理 经济 管理
作者
Klim Zaporojets,Johannes Deleu,Chris Develder,Thomas Demeester
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:58 (4): 102563-102563 被引量:22
标识
DOI:10.1016/j.ipm.2021.102563
摘要

This paper presents DWIE, the ‘Deutsche Welle corpus for Information Extraction’, a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE’s potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doudou发布了新的文献求助10
1秒前
意意发布了新的文献求助20
1秒前
1秒前
大模型应助木瓜采纳,获得10
3秒前
段段发布了新的文献求助10
3秒前
4秒前
只只发布了新的文献求助10
4秒前
ding应助肿瘤柳叶刀采纳,获得10
5秒前
wang0626完成签到 ,获得积分10
6秒前
想读博的圆圆脸完成签到,获得积分10
6秒前
土拨鼠发布了新的文献求助10
6秒前
政政勇闯世界完成签到,获得积分10
7秒前
kkkkk发布了新的文献求助10
7秒前
烂漫的沂完成签到 ,获得积分10
7秒前
8秒前
aaaaaa发布了新的文献求助10
8秒前
8秒前
setfgrew发布了新的文献求助30
8秒前
ZhaoYu完成签到,获得积分10
8秒前
科研通AI2S应助Ruiruirui采纳,获得10
9秒前
kjh完成签到,获得积分10
9秒前
9秒前
高级后勤完成签到,获得积分10
10秒前
10秒前
东郭凝蝶完成签到 ,获得积分10
10秒前
xwj发布了新的文献求助10
11秒前
天天快乐应助北北采纳,获得10
11秒前
lancyab发布了新的文献求助10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得50
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
11哥应助科研通管家采纳,获得10
12秒前
冰魂应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
杭谷波完成签到,获得积分20
12秒前
LHL关闭了LHL文献求助
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846