Abstract PO-084: Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN)

阶段(地层学) 胰腺 医学 胰腺癌 卷积神经网络 分割 最小边界框 放射科 人工智能 计算机科学 癌症 内科学 图像(数学) 生物 古生物学
作者
Anurima Patra,Korfiatis Panagiotis,Garima Suman,Ananya Panda,Sushil Kumar Garg,Ajit H. Goenka
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:27 (5_Supplement): PO-084 被引量:1
标识
DOI:10.1158/1557-3265.adi21-po-084
摘要

Abstract Purpose: Around 30% of PDAC less than 2-cm tend to go undetected on CT due to their subtle imaging signatures. Automated detection of PDAC using AI represents an opportunity to augment physician expertise and to improve outcomes through early detection of PDAC. Our purpose was to develop a 3D-CNN for fully automated detection of PDAC and to further evaluate the impact of inclusion of pancreas segmentation on the accuracy of this 3D-CNN. Methods: A Medical Imaging Data Readiness Scale (MIDaR) level A dataset (portal venous phase CTs, slice thickness ≤ 3.75 mm) of 466 treatment-naïve biopsy-proven PDAC and 1994 subjects with normal pancreas was created after exclusion of CTs with suboptimal image quality or biliary stents. Volumetric pancreas and tumor segmentations on CTs were done by two radiologists using 3D Slicer. A total of 370 CTs with PDAC and 370 CTs with normal pancreas were randomly selected for separate training and validation sets, and 396 CTs (96 CTs with PDAC and 300 CTs with normal pancreas) were utilized for testing. Two separate 3D-CNNs were trained. A three-stage bounding-box-only model (A): stage 1 was based on a UNET-like architecture and localized the pancreas on CT with a bounding box; stage 2 utilized an Inception ResNet architecture and classified each slice through the pancreas into PDAC vs. normal; and stage 3 utilized the output of stage 2 to generate final classification for a given CT. Conversely, a four-stage pancreas segmentation-based model (B) included stage 1 of model A followed by an additional stage of automated pancreas and tumor segmentation (stage 2), classification of each slice through the pancreas into PDAC vs. normal (stage 3) and, finally, generation of final classification score (stage 4) for a given CT. Area under the receiver operating characteristic curve (AUROC) of the two models were compared on the test set. Results: Mean (SD) PDAC diameter in the test set was 1.1 (0.43) cm. Model A (three-stage bounding-box-only) correctly classified 305 (77%) out of 396 CTs from the test set into PDAC vs. normal. It incorrectly classified 12/96 (12.5%) CTs with PDAC as normal and 79/300 (26%) normal CTs as PDAC. AUROC for model A was 0.85. Model B (four-stage pancreas segmentation-based) correctly classified 351 (88%) out of 396 CTs. It incorrectly classified 13/96 (13.5%) CTs with PDAC as normal and 32/300 (10.7%) normal CTs as PDAC. AUROC for model B was 0.94. AUROC for model B was significantly higher than model A (p<0.005). Conclusion: A 3D-CNN can detect small PDAC with high accuracy using automated localization of pancreas with a bounding box without relying on separate pancreas segmentation. Inclusion of an additional automated pancreas segmentation step reduced false positives with consequent incremental gain in the model’s accuracy. Prospective validation and subsequent integration of such models into clinical workflows has the potential to reduce inadvertent errors in detection of subtle or small PDAC on standard-of-care CT scans. Citation Format: Anurima Patra, Korfiatis Panagiotis, Garima Suman, Ananya Panda, Sushil Kumar Garg, Ajit Goenka. Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN) [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr PO-084.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Brian采纳,获得10
1秒前
1秒前
2秒前
jing发布了新的文献求助10
2秒前
HOHO发布了新的文献求助10
2秒前
科研通AI5应助能干宛秋采纳,获得10
2秒前
2秒前
2秒前
3秒前
庸尘完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
cdercder应助至秦采纳,获得10
4秒前
不潮不用花钱完成签到,获得积分10
4秒前
天天快乐应助chrislignin采纳,获得10
4秒前
科研通AI5应助wangx采纳,获得10
4秒前
5秒前
5秒前
超锅完成签到,获得积分20
5秒前
111完成签到 ,获得积分10
5秒前
ardejiang发布了新的文献求助10
5秒前
5秒前
5秒前
Altria发布了新的文献求助10
5秒前
CC发布了新的文献求助10
6秒前
wangzai完成签到,获得积分10
6秒前
等风来完成签到,获得积分10
7秒前
孙琪发布了新的文献求助10
7秒前
所所应助nana采纳,获得10
7秒前
香蕉觅云应助汎影采纳,获得10
7秒前
狗蛋发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
动漫大师发布了新的文献求助10
8秒前
chaofan完成签到 ,获得积分10
9秒前
LHW完成签到 ,获得积分10
9秒前
等风来发布了新的文献求助10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868