高熵合金
材料科学
合金
催化作用
导线
贝叶斯优化
氧还原
密度泛函理论
熵(时间箭头)
电化学
还原(数学)
计算机科学
化学工程
纳米技术
热力学
化学
冶金
物理化学
计算化学
数学
机器学习
电极
物理
几何学
工程类
地理
生物化学
大地测量学
作者
Jack K. Pedersen,Christian M. Clausen,Olga A. Krysiak,Bin Xiao,Thomas A. A. Batchelor,Tobias Löffler,Vladislav A. Mints,Lars Banko,Matthias Arenz,Alan Savan,Wolfgang Schuhmann,Alfred Ludwig,Jan Rossmeisl
标识
DOI:10.1002/anie.202108116
摘要
Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI