Machine Learning for Chemical Reactions

领域(数学) 人工智能 推论 化学 机器学习 贝叶斯推理 国家(计算机科学) 生化工程 计算机科学 贝叶斯概率 算法 数学 纯数学 工程类
作者
Markus Meuwly
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:121 (16): 10218-10239 被引量:322
标识
DOI:10.1021/acs.chemrev.1c00033
摘要

Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉克丝完成签到 ,获得积分10
刚刚
1秒前
灵巧妙芙发布了新的文献求助10
3秒前
生动谷蓝完成签到,获得积分10
3秒前
6秒前
bkagyin应助gsonix采纳,获得10
7秒前
7秒前
SciGPT应助吴龙采纳,获得20
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
羊肉泡馍发布了新的文献求助10
11秒前
11秒前
大个应助豆小豆采纳,获得10
11秒前
12秒前
共享精神应助孤巷的猫采纳,获得10
12秒前
3131879775完成签到,获得积分10
12秒前
pure123发布了新的文献求助10
13秒前
zhj完成签到,获得积分20
14秒前
Kcc发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
李星云发布了新的文献求助10
17秒前
YG完成签到,获得积分10
17秒前
20秒前
20秒前
liuyux发布了新的文献求助10
20秒前
22秒前
敏感易烟发布了新的文献求助30
23秒前
23秒前
believe杨完成签到,获得积分10
23秒前
aa发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479616
求助须知:如何正确求助?哪些是违规求助? 3936982
关于积分的说明 12213490
捐赠科研通 3591701
什么是DOI,文献DOI怎么找? 1975162
邀请新用户注册赠送积分活动 1012407
科研通“疑难数据库(出版商)”最低求助积分说明 905660