Quantum Optical Convolutional Neural Network: A Novel Image Recognition Framework for Quantum Computing

计算机科学 MNIST数据库 卷积神经网络 量子计算机 深度学习 人工智能 人工神经网络 量子 瓶颈 物理 嵌入式系统 量子力学
作者
Rishab Parthasarathy,Rohan T. Bhowmik
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 103337-103346 被引量:31
标识
DOI:10.1109/access.2021.3098775
摘要

Large machine learning models based on Convolutional Neural Networks (CNNs) with rapidly increasing number of parameters, trained with massive amounts of data, are being deployed in a wide array of computer vision tasks from self-driving cars to medical imaging. The insatiable demand for computing resources required to train these models is fast outpacing the advancement of classical computing hardware, and new frameworks including Optical Neural Networks (ONNs) and quantum computing are being explored as future alternatives. In this work, we report a novel quantum computing based deep learning model, the Quantum Optical Convolutional Neural Network (QOCNN), to alleviate the computational bottleneck in future computer vision applications. Using the popular MNIST dataset, we have benchmarked this new architecture against a traditional CNN based on the seminal LeNet model. We have also compared the performance with previously reported ONNs, namely the GridNet and ComplexNet, as well as a Quantum Optical Neural Network (QONN) that we built by combining the ComplexNet with quantum based sinusoidal nonlinearities. In essence, our work extends the prior research on QONN by adding quantum convolution and pooling layers preceding it. We have evaluated all the models by determining their accuracies, confusion matrices, Receiver Operating Characteristic (ROC) curves, and Matthews Correlation Coefficients. The performance of the models were similar overall, and the ROC curves indicated that the new QOCNN model is robust. Finally, we estimated the gains in computational efficiencies from executing this novel framework on a quantum computer. We conclude that switching to a quantum computing based approach to deep learning may result in comparable accuracies to classical models, while achieving unprecedented boosts in computational performances and drastic reduction in power consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哩哩完成签到,获得积分10
1秒前
2秒前
2秒前
JamesPei应助日日是春日采纳,获得30
2秒前
彭于晏应助阿佑采纳,获得10
3秒前
Enyiqi001完成签到 ,获得积分10
3秒前
wu完成签到,获得积分10
3秒前
zmy发布了新的文献求助10
3秒前
刘太冰完成签到,获得积分10
4秒前
万能图书馆应助爱大美采纳,获得10
4秒前
4秒前
5秒前
心灵美的白易完成签到,获得积分10
6秒前
Carefree发布了新的文献求助10
8秒前
华仔应助斯文的海安采纳,获得10
8秒前
Zhao完成签到 ,获得积分10
9秒前
Hong完成签到 ,获得积分10
10秒前
wang发布了新的文献求助30
10秒前
情怀应助小乖采纳,获得10
11秒前
12秒前
13秒前
LegendZ完成签到,获得积分10
13秒前
15秒前
九零后无心完成签到,获得积分10
15秒前
小杰完成签到 ,获得积分10
16秒前
Yange发布了新的文献求助10
17秒前
王烜发布了新的文献求助10
18秒前
18秒前
lll完成签到,获得积分20
18秒前
18秒前
东郭以云发布了新的文献求助10
19秒前
19秒前
星辰完成签到,获得积分10
23秒前
24秒前
Alps发布了新的文献求助10
24秒前
蜂蜜完成签到,获得积分10
24秒前
guojingjing发布了新的文献求助10
24秒前
25秒前
爱大美发布了新的文献求助10
25秒前
王烜完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540081
求助须知:如何正确求助?哪些是违规求助? 4626714
关于积分的说明 14600589
捐赠科研通 4567663
什么是DOI,文献DOI怎么找? 2504126
邀请新用户注册赠送积分活动 1481862
关于科研通互助平台的介绍 1453482