亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization-based automated unsupervised classification method: A novel approach

计算机科学 人工智能 光学(聚焦) 模式识别(心理学) 航程(航空) 过程(计算) 上下文图像分类 分割 数据挖掘 选择(遗传算法) 图像(数学) 机器学习 光学 物理 操作系统 复合材料 材料科学
作者
Dilek Kucuk Matci,Uğur Avdan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:160: 113735-113735 被引量:3
标识
DOI:10.1016/j.eswa.2020.113735
摘要

• We present two new unsupervised methods to classify remotely sensed data. • These methods perform classification process automatically. • The proposed methods allow to focus on specific classes in the image. • The performance of proposed method was compared with in four study areas. Unsupervised classification algorithms are methods for the analysis of remotely sensed images. Since these methods do not include a training phase, they require less time to apply and are more practical to use. Traditional unsupervised classification methods work with parameters given by the user, such as the number of classes, the stop criterion or the number of iterations of the algorithm. Determining the optimum values of these parameters to obtain successful classification result is a major problem. In this study, we propose two new methods, the weighted density based optimized classification method (DBOC-Weighted) and the automatic density based optimized classification method (DBOC-Automatic). Both work automatically without the need for parameters from the user, but the DBOC-Weighted only requires layer weights. These methods consist of data range expansion, useful data selection, segmentation and optimization stages, and perform the classification automatically. Both create new layers of data using remotely sensed images. After creating the initial classes based on density from all the data layers, the results are created by optimizing all classes in terms of quality indices. Four Sentinel 2 images are used to test the performance of the proposed methods. These images are selected from regions that have different geographical, climatic and vegetation properties. The results obtained are compared with the unsupervised classification methods frequently used in the literature. The accuracy analysis results show that the proposed classification algorithms produce satisfactory accuracy compared to the results of other algorithms. The results show that the proposed methods can be used successfully in the creation of expert and intelligent analysis systems, by eliminating user-induced error in the analysis of remotely sensed images. Thus, smart analysis tools can be created so that users from various professional disciplines can easily use them without being image processing specialists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex应助过儿采纳,获得30
1秒前
Tendency完成签到 ,获得积分10
3秒前
xiyaxia完成签到 ,获得积分10
3秒前
4秒前
8秒前
米歇尔发布了新的文献求助10
14秒前
雨柏完成签到 ,获得积分10
16秒前
Ryan完成签到 ,获得积分10
16秒前
taku完成签到 ,获得积分10
17秒前
yinshan完成签到 ,获得积分10
20秒前
22秒前
自觉语琴完成签到 ,获得积分10
26秒前
eclo完成签到 ,获得积分10
27秒前
米歇尔完成签到,获得积分10
29秒前
29秒前
30秒前
33秒前
36秒前
jimoon完成签到,获得积分10
36秒前
王木木完成签到 ,获得积分10
38秒前
qiang344完成签到 ,获得积分10
41秒前
Nick完成签到 ,获得积分0
48秒前
平头完成签到,获得积分10
50秒前
1分钟前
贺俊龙完成签到,获得积分10
1分钟前
贺俊龙发布了新的文献求助10
1分钟前
1分钟前
蛋白积聚完成签到,获得积分10
1分钟前
风清扬应助mengmeng采纳,获得30
1分钟前
1分钟前
零_发布了新的文献求助10
1分钟前
康康舞曲完成签到 ,获得积分10
1分钟前
秋作完成签到,获得积分10
1分钟前
1分钟前
米其林发布了新的文献求助30
1分钟前
1分钟前
KON完成签到,获得积分10
1分钟前
1分钟前
黎明完成签到,获得积分10
1分钟前
零_完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147