The non-linear relationship between sum of 7 skinfolds and fat and lean mass in elite swimmers

瘦体质量 体质指数 脂肪团 精英 数学 双能X射线吸收法 医学 标准误差 体重 统计 动物科学 内科学 生物 骨矿物 法学 骨质疏松症 政治 政治学
作者
Lachlan J G Mitchell,Kirstin S. Morris,Kate A. Bolam,Kellie R. Pritchard-Peschek,Tina L. Skinner,Megan E. Shephard
出处
期刊:Journal of Sports Sciences [Taylor & Francis]
卷期号:38 (20): 2307-2313 被引量:2
标识
DOI:10.1080/02640414.2020.1779491
摘要

Body composition can substantially impact elite swimming performance. In practice, changes in fat and lean mass of elite swimmers are estimated using body mass, sum of seven skinfolds (∑7) and lean mass index (LMI). However, LMI may be insufficiently accurate to detect small changes in body composition which could meaningfully impact swimming performance. This study developed equations which estimate dual-energy x-ray absorptiometry (DXA)-derived lean and fat mass using body mass and ∑7 data. Elite Australian swimmers (n = 44; 18 male, 26 female) completed a DXA scan and standardised body mass and ∑7 measurements. Equations to estimate DXA-derived lean and fat mass based on body mass, ∑7 and sex were developed. The relationships between ∑7, body mass and DXA-derived lean and fat mass were non-linear. Fat mass (Adjusted R2 = 0.91; standard error = 1.0 kg) and lean mass (Adjusted R2 = 0.99; standard error = 1.0 kg) equations were considered sufficiently accurate. Lean mass estimates outperformed the LMI in identifying the correct direction of change in lean mass (82% correct; LMI 71%). Using the accurate estimations produced by these equations will enhance the prescription and evaluation of programmes to optimise the body composition and subsequent performance in swimmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fiona完成签到,获得积分20
1秒前
慕青应助Eujay采纳,获得10
1秒前
敏感浩然完成签到,获得积分20
1秒前
1秒前
诚c发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
科研通AI6应助一鹿阳光采纳,获得30
4秒前
赘婿应助Ffan采纳,获得10
4秒前
小蘑菇应助xiaotan_63采纳,获得10
5秒前
搞怪文轩完成签到,获得积分10
5秒前
6秒前
123完成签到 ,获得积分10
7秒前
Lucas应助帅气的芝麻采纳,获得10
7秒前
CLF发布了新的文献求助20
8秒前
8秒前
敏感浩然发布了新的文献求助30
8秒前
9秒前
9秒前
ekswai完成签到,获得积分10
10秒前
红油曲奇发布了新的文献求助10
10秒前
初心完成签到 ,获得积分10
10秒前
11秒前
buer发布了新的文献求助10
12秒前
YeSun完成签到,获得积分10
13秒前
14秒前
NexusExplorer应助凌123采纳,获得10
14秒前
14秒前
xsimont发布了新的文献求助10
15秒前
王卫完成签到,获得积分10
15秒前
企鹅完成签到,获得积分10
16秒前
16秒前
小二郎应助CLF采纳,获得10
16秒前
16秒前
YeSun发布了新的文献求助30
17秒前
18秒前
18秒前
18秒前
kingwill发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264730
求助须知:如何正确求助?哪些是违规求助? 4424968
关于积分的说明 13774923
捐赠科研通 4300117
什么是DOI,文献DOI怎么找? 2359607
邀请新用户注册赠送积分活动 1355721
关于科研通互助平台的介绍 1316979