A pilot study of radiomics signature based on biparametric MRI for preoperative prediction of extrathyroidal extension in papillary thyroid carcinoma

无线电技术 特征选择 特征(语言学) 磁共振成像 随机森林 过度拟合 人工智能 接收机工作特性 甲状腺癌 放射科 医学 计算机科学 模式识别(心理学) 核医学 机器学习 甲状腺 内科学 哲学 人工神经网络 语言学
作者
Junlin He,Heng Zhang,Xian Wang,Zongqiong Sun,Yuxi Ge,Kang Wang,Chunjing Yu,Zhaohong Deng,Jianxin Feng,Xin Xu,Shudong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (1): 171-183 被引量:11
标识
DOI:10.3233/xst-200760
摘要

OBJECTIVE: To investigate efficiency of radiomics signature to preoperatively predict histological features of aggressive extrathyroidal extension (ETE) in papillary thyroid carcinoma (PTC) with biparametric magnetic resonance imaging findings. MATERIALS AND METHODS: Sixty PTC patients with preoperative MR including T2WI and T2WI-fat-suppression (T2WI-FS) were retrospectively analyzed. Among them, 35 had ETE and 25 did not. Pre-contrast T2WI and T2WI-FS images depicting the largest section of tumor were selected. Tumor regions were manually segmented using ITK-SNAP software and 107 radiomics features were computed from the segmented regions using the open Pyradiomics package. Then, a random forest model was built to do classification in which the datasets were partitioned randomly 10 times to do training and testing with ratio of 1:1. Furthermore, forward greedy feature selection based on feature importance was adopted to reduce model overfitting. Classification accuracy was estimated on the test set using area under ROC curve (AUC). RESULTS: The model using T2WI-FS image features yields much higher performance than the model using T2WI features (AUC = 0.906 vs. 0.760 using 107 features). Among the top 10 important features of T2WI and T2WI-FS, there are 5 common features. After feature selection, the models trained using top 2 features of T2WI and the top 6 features of T2WI-FS achieve AUC 0.845 and 0.928, respectively. Combining features computed from T2WI and T2WI-FS, model performance decreases slightly (AUC = 0.882 based on all features and AUC = 0.913 based on top features after feature selection). Adjusting hyper parameters of the random forest model have negligible influence on the model performance with mean AUC = 0.907 for T2WI-FS images. CONCLUSIONS: Radiomics features based on pre-contrast T2WI and T2WI-FS is helpful to predict aggressive ETE in PTC. Particularly, the model trained using the optimally selected T2WI-FS image features yields the best classification performance. The most important features relate to lesion size and the texture heterogeneity of the tumor region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
人间烟火发布了新的文献求助10
4秒前
程哲瀚完成签到,获得积分10
4秒前
4秒前
Ava应助幽默小熊猫采纳,获得10
5秒前
玉崟完成签到 ,获得积分10
6秒前
wgl200212完成签到,获得积分10
6秒前
疯批镁铝完成签到 ,获得积分10
6秒前
6秒前
6秒前
浮游应助小馨要变有钱采纳,获得10
6秒前
斯文败类应助欣慰的书本采纳,获得10
7秒前
7秒前
hhhhhg完成签到,获得积分10
7秒前
内坻崿完成签到,获得积分10
8秒前
MrDI发布了新的文献求助10
8秒前
赫山柳发布了新的文献求助10
9秒前
咯噔发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Hhhhh完成签到 ,获得积分10
11秒前
深情安青应助Cindy采纳,获得10
11秒前
11秒前
可爱的函函应助秧秧采纳,获得10
12秒前
jack发布了新的文献求助10
12秒前
大大小小完成签到,获得积分10
13秒前
13秒前
加油完成签到 ,获得积分10
13秒前
仙都丽娜完成签到,获得积分10
14秒前
小鱼儿发布了新的文献求助10
14秒前
张sjb发布了新的文献求助150
15秒前
小兰发布了新的文献求助10
16秒前
安医清嘉完成签到,获得积分10
16秒前
奈何心有绪完成签到,获得积分20
16秒前
16秒前
pp发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308126
求助须知:如何正确求助?哪些是违规求助? 4453339
关于积分的说明 13857031
捐赠科研通 4341040
什么是DOI,文献DOI怎么找? 2383601
邀请新用户注册赠送积分活动 1378277
关于科研通互助平台的介绍 1346269