Incipient Fault Diagnosis for High-Speed Train Traction Systems via Stacked Generalization

随机森林 计算机科学 估计员 算法 人工智能 断层(地质) 牵引(地质) 梯度升压 数学 工程类 统计 地质学 地震学 机械工程
作者
Zehui Mao,Mingxuan Xia,Kangkang Zhang,Dazhuan Xu,Peng Shi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (8): 7624-7633 被引量:37
标识
DOI:10.1109/tcyb.2020.3034929
摘要

Diagnosing the fault as early as possible is significant to guarantee the safety and reliability of the high-speed train. Incipient fault always makes the monitored signals deviate from their normal values, which may lead to serious consequences gradually. Due to the obscure early stage symptoms, incipient faults are difficult to detect. This article develops a stacked generalization (stacking)-based incipient fault diagnosis scheme for the traction system of high-speed trains. To extract the fault feature from the faulty data signals, which are similar to the normal ones, the extreme gradient boosting (XGBoost), random forest (RF), extra trees (ET), and light gradient boosting machine (LightGBM) are chosen as the base estimators in the first layer of the stacking. Then, the logistic regression (LR) is taken as the meta estimator in the second layer to integrate the results from the base estimators for fault classification. Thanks to the generalization ability of stacking, the incipient fault diagnosis performance of the proposed stacking-based method is better than that of the single model (XGBoost, RF, ET, and LightGBM), although they can be used to detect the incipient faults, separately. Moreover, to find out the optimal hyperparameters of the base estimators, a swarm intelligent optimization algorithm, pigeon-inspired optimization (PIO), is employed. The proposed method is tested on a semiphysical platform of the CRH2 traction system in CRRC Zhuzhou Locomotive Company Ltd. The results show that the fault diagnosis rate of the proposed scheme is over 96%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀手猪猫完成签到,获得积分20
1秒前
RN发布了新的文献求助10
3秒前
汉堡包应助Heyu采纳,获得30
4秒前
熊熊发布了新的文献求助10
4秒前
李健的粉丝团团长应助Rick采纳,获得10
4秒前
小马甲应助赢赢采纳,获得30
4秒前
田様应助义气的勒采纳,获得10
5秒前
乌云发布了新的文献求助10
5秒前
6秒前
斯文败类应助坚强的曼雁采纳,获得10
6秒前
胡图图发布了新的文献求助20
7秒前
锅盖发布了新的文献求助10
10秒前
AAAaa发布了新的文献求助10
10秒前
哈哈完成签到 ,获得积分10
10秒前
13秒前
rain完成签到,获得积分10
14秒前
14秒前
wwc应助RN采纳,获得10
14秒前
dali完成签到,获得积分10
14秒前
17秒前
CodeCraft应助魏伯安采纳,获得10
17秒前
传奇3应助忧伤的南莲采纳,获得10
18秒前
18秒前
ken完成签到,获得积分10
19秒前
杨仔发布了新的文献求助10
19秒前
bkagyin应助DzongKha采纳,获得10
21秒前
lanming完成签到,获得积分10
22秒前
24秒前
开朗冬萱完成签到 ,获得积分10
24秒前
amumu完成签到,获得积分10
27秒前
魏伯安发布了新的文献求助10
27秒前
如此完成签到,获得积分10
28秒前
29秒前
胡图图完成签到,获得积分10
29秒前
Sijsneh还有完成签到,获得积分20
30秒前
slow发布了新的文献求助10
30秒前
30秒前
31秒前
fafachoi完成签到,获得积分10
31秒前
34秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897014
求助须知:如何正确求助?哪些是违规求助? 3440818
关于积分的说明 10818970
捐赠科研通 3165812
什么是DOI,文献DOI怎么找? 1748945
邀请新用户注册赠送积分活动 845077
科研通“疑难数据库(出版商)”最低求助积分说明 788423