神经形态工程学
计算机科学
人工神经网络
计算机体系结构
人工智能
光子学
实施
领域(数学分析)
高效能源利用
硅光子学
人工智能应用
工程类
软件工程
电气工程
材料科学
光电子学
数学
数学分析
作者
Bicky A. Márquez,Matthew J. Filipovich,Emma R. Howard,Viraj Bangari,Zhimu Guo,Hugh Morison,Thomas Ferreira de Lima,Alexander N. Tait,Paul R. Prucnal,Bhavin J. Shastri
出处
期刊:Photoniques
[EDP Sciences]
日期:2020-09-01
卷期号: (104): 40-44
被引量:3
标识
DOI:10.1051/photon/202010440
摘要
Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference.
科研通智能强力驱动
Strongly Powered by AbleSci AI