Electrolyte Oxidation Pathways in Lithium-Ion Batteries

化学 电解质 锂(药物) 电极 离子 无机化学 化学工程 物理化学 有机化学 医学 工程类 内分泌学
作者
Bernardine L. D. Rinkel,David S. Hall,Israel Temprano,Clare P. Grey
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (35): 15058-15074 被引量:268
标识
DOI:10.1021/jacs.0c06363
摘要

The mitigation of decomposition reactions of lithium-ion battery electrolyte solutions is of critical importance in controlling device lifetime and performance. However, due to the complexity of the system, exacerbated by the diverse set of electrolyte compositions, electrode materials, and operating parameters, a clear understanding of the key chemical mechanisms remains elusive. In this work, operando pressure measurements, solution NMR, and electrochemical methods were combined to study electrolyte oxidation and reduction at multiple cell voltages. Two-compartment LiCoO2/Li cells were cycled with a lithium-ion conducting glass-ceramic separator so that the species formed at each electrode could be identified separately and further reactions of these species at the opposite electrode prevented. One principal finding is that chemical oxidation (with an onset voltage of ∼4.7 V vs Li/Li+ for LiCoO2), rather than electrochemical reaction, is the dominant decomposition process at the positive electrode surface in this system. This is ascribed to the well-known release of reactive oxygen at higher states-of-charge, indicating that reactions of the electrolyte at the positive electrode are intrinsically linked to surface reactivity of the active material. Soluble electrolyte decomposition products formed at both electrodes are characterized, and a detailed reaction scheme is constructed to rationalize the formation of the observed species. The insights on electrolyte decomposition through reactions with reactive oxygen species identified through this work have a direct impact on understanding and mitigating degradation in high-voltage/higher-energy-density LiCoO2-based cells, and more generally for cells containing nickel-containing cathode materials (e.g., LiNixMnyCozO2; NMCs), as they lose oxygen at lower operating voltages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土拨鼠发布了新的文献求助10
1秒前
yupeijin完成签到,获得积分10
6秒前
科研通AI5应助顺利代曼采纳,获得10
6秒前
6秒前
小慧完成签到,获得积分10
8秒前
领导范儿应助大胆秋灵采纳,获得10
10秒前
丘比特应助jinyu采纳,获得10
10秒前
帅气的祥发布了新的文献求助10
11秒前
李爱国应助一个小胖子采纳,获得10
12秒前
ORANGE完成签到,获得积分10
13秒前
14秒前
16秒前
夏雪完成签到 ,获得积分10
17秒前
sujinyu发布了新的文献求助10
20秒前
22秒前
24秒前
25秒前
fsznc1完成签到 ,获得积分0
25秒前
顺利代曼发布了新的文献求助10
26秒前
李爱国应助帅气的祥采纳,获得10
26秒前
yang完成签到,获得积分20
27秒前
xxx发布了新的文献求助10
27秒前
贝贝发布了新的文献求助10
28秒前
Summertrain发布了新的文献求助30
30秒前
34秒前
禹代秋完成签到,获得积分10
35秒前
SciGPT应助顺利代曼采纳,获得10
35秒前
36秒前
科研通AI5应助峡星牙采纳,获得10
38秒前
FireRain发布了新的文献求助10
40秒前
40秒前
41秒前
稀饭发布了新的文献求助10
43秒前
bkagyin应助Summertrain采纳,获得30
44秒前
帅气的祥发布了新的文献求助10
47秒前
48秒前
诗蕊发布了新的文献求助10
49秒前
hugeyoung发布了新的文献求助10
53秒前
xxx关注了科研通微信公众号
54秒前
神勇的豁发布了新的文献求助20
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385