材料科学                        
                
                                
                        
                            转印                        
                
                                
                        
                            柔性电子器件                        
                
                                
                        
                            光电子学                        
                
                                
                        
                            数码产品                        
                
                                
                        
                            半导体                        
                
                                
                        
                            有机半导体                        
                
                                
                        
                            纳米技术                        
                
                                
                        
                            晶体管                        
                
                                
                        
                            薄膜晶体管                        
                
                                
                        
                            基质(水族馆)                        
                
                                
                        
                            复合材料                        
                
                                
                        
                            电气工程                        
                
                                
                        
                            图层(电子)                        
                
                                
                        
                            电压                        
                
                                
                        
                            海洋学                        
                
                                
                        
                            地质学                        
                
                                
                        
                            工程类                        
                
                        
                    
            作者
            
                Weilin Liu,Qiusong Chen,Fan Xu,Conghuan Wang,Jiang Yang,Hanxiao Jiang,Guodong Zhu            
         
                    
        
    
            
            标识
            
                                    DOI:10.1021/acsaelm.0c01078
                                    
                                
                                 
         
        
                
            摘要
            
            Polymer semiconductors have exhibited their perspective in flexible, stretchable, and wearable electronics, where high-performance polymer semiconductors are always expected for high device performance. Various directional alignment techniques have been put forward to enhance device performance. However, not all these techniques are suitable on flexible substrates. Solution-based deposition also suffers the risk of interface degradation between semiconducting/dielectric layers and therefore the degradation of device performance. A film transfer technique is one of promising measures to solve these problems. We developed a simple and reliable thermal release transfer technique to transfer well-aligned and centimeter-scaled polymer semiconducting film from rigid to flexible substrates. A friction-transferred polytetrafluoroethylene template on silicon was used to guide the anisotropic crystallization of organic semiconducting film. The semiconducting film was transferred onto a flexible substrate via thermal release tape whose adhesion was modulated by proper annealing treatment. The flexible device based on such transferred and well-aligned semiconducting film presented the largest carrier mobility of 1.02 cm2 V–1 s–1 and the largest on/off ratio of 2.6 × 104 than the other control devices. Bending measurements further proved that such devices presented good endurance on both tensile strain and bending cycling. As an example, an extended-gate organic transistor was developed as a proximity sensor to perceive the approach of a charged object.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI