Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study

列线图 医学 队列 癌症 放射科 原发性肿瘤 内科学 肿瘤科 置信区间 核医学 淋巴结 转移
作者
Di Dong,M. Fang,Lingyun Tang,Xiuhong Shan,Jianbo Gao,Francesco Giganti,R.-P. Wang,X. Chen,X.-X. Wang,Diego Palumbo,Jia Fu,Wenzheng Li,J. Li,Lianzhen Zhong,Francesco De Cobelli,Jiafu Ji,Zaiyi Liu,Jie Tian
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:31 (7): 912-920 被引量:317
标识
DOI:10.1016/j.annonc.2020.04.003
摘要

•Evaluation of the lymph node metastasis (LNM) is the basis of individual treatment of locally advanced gastric cancer (LAGC).•Deep leaning radiomic nomogram (DLRN) based on CT images can preoperatively determine the number of LNM in LAGC.•DLRN is significantly superior to the routinely used clinical N stages, tumor size, and clinical model.•DLRN is significantly associated with the overall survival of LAGC. BackgroundPreoperative evaluation of the number of lymph node metastasis (LNM) is the basis of individual treatment of locally advanced gastric cancer (LAGC). However, the routinely used preoperative determination method is not accurate enough.Patients and methodsWe enrolled 730 LAGC patients from five centers in China and one center in Italy, and divided them into one primary cohort, three external validation cohorts, and one international validation cohort. A deep learning radiomic nomogram (DLRN) was built based on the images from multiphase computed tomography (CT) for preoperatively determining the number of LNM in LAGC. We comprehensively tested the DLRN and compared it with three state-of-the-art methods. Moreover, we investigated the value of the DLRN in survival analysis.ResultsThe DLRN showed good discrimination of the number of LNM on all cohorts [overall C-indexes (95% confidence interval): 0.821 (0.785–0.858) in the primary cohort, 0.797 (0.771–0.823) in the external validation cohorts, and 0.822 (0.756–0.887) in the international validation cohort]. The nomogram performed significantly better than the routinely used clinical N stages, tumor size, and clinical model (P < 0.05). Besides, DLRN was significantly associated with the overall survival of LAGC patients (n = 271).ConclusionA deep learning-based radiomic nomogram had good predictive value for LNM in LAGC. In staging-oriented treatment of gastric cancer, this preoperative nomogram could provide baseline information for individual treatment of LAGC. Preoperative evaluation of the number of lymph node metastasis (LNM) is the basis of individual treatment of locally advanced gastric cancer (LAGC). However, the routinely used preoperative determination method is not accurate enough. We enrolled 730 LAGC patients from five centers in China and one center in Italy, and divided them into one primary cohort, three external validation cohorts, and one international validation cohort. A deep learning radiomic nomogram (DLRN) was built based on the images from multiphase computed tomography (CT) for preoperatively determining the number of LNM in LAGC. We comprehensively tested the DLRN and compared it with three state-of-the-art methods. Moreover, we investigated the value of the DLRN in survival analysis. The DLRN showed good discrimination of the number of LNM on all cohorts [overall C-indexes (95% confidence interval): 0.821 (0.785–0.858) in the primary cohort, 0.797 (0.771–0.823) in the external validation cohorts, and 0.822 (0.756–0.887) in the international validation cohort]. The nomogram performed significantly better than the routinely used clinical N stages, tumor size, and clinical model (P < 0.05). Besides, DLRN was significantly associated with the overall survival of LAGC patients (n = 271). A deep learning-based radiomic nomogram had good predictive value for LNM in LAGC. In staging-oriented treatment of gastric cancer, this preoperative nomogram could provide baseline information for individual treatment of LAGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热的雨双完成签到 ,获得积分10
2秒前
2秒前
2秒前
4秒前
想人陪的万言完成签到,获得积分10
5秒前
6秒前
6秒前
聪明乐巧完成签到,获得积分10
6秒前
胡桃夹子发布了新的文献求助10
7秒前
shuangcheng发布了新的文献求助10
8秒前
科研通AI5应助lxr2采纳,获得10
8秒前
张啦啦完成签到 ,获得积分10
9秒前
朱婷完成签到 ,获得积分10
10秒前
woobinhua发布了新的文献求助10
10秒前
VDC驳回了Rye227应助
10秒前
lucky发布了新的文献求助10
10秒前
12秒前
13秒前
小卷粉发布了新的文献求助20
13秒前
wwww完成签到,获得积分10
13秒前
动听安筠完成签到 ,获得积分10
14秒前
wwww发布了新的文献求助10
16秒前
17秒前
缥缈的平露完成签到,获得积分10
18秒前
whoops发布了新的文献求助10
19秒前
20秒前
001完成签到,获得积分10
21秒前
22秒前
学术卷心菜完成签到,获得积分10
24秒前
暗能量发布了新的文献求助10
26秒前
柴郡喵完成签到,获得积分10
28秒前
luochen完成签到,获得积分10
28秒前
默默梦桃完成签到 ,获得积分10
28秒前
祁乾完成签到 ,获得积分10
29秒前
淡淡书白完成签到,获得积分10
31秒前
31秒前
爱看文献的小恐龙完成签到,获得积分10
35秒前
x跳完成签到,获得积分10
36秒前
lxr2发布了新的文献求助10
37秒前
carlitos完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734