多硫化物
异质结
原位
电池(电)
材料科学
储能
电极
硫黄
氧化还原
纳米技术
光电子学
化学工程
化学
冶金
电解质
物理
物理化学
功率(物理)
有机化学
工程类
量子力学
作者
Chaohui Wei,Menglei Wang,Zixiong Shi,Lianghao Yu,Shuo Li,Zhaodi Fan,Ruizhi Yang,Jingyu Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2020-11-06
卷期号:14 (11): 16073-16084
被引量:134
标识
DOI:10.1021/acsnano.0c07999
摘要
The Li-S battery has emerged as a promising next-generation system for advanced energy storage. Notwithstanding the recent progress, the problematic polysulfide shuttling, retarded sulfur redox, and low output of volumetric capacity remain daunting challenges toward its practicability. In response, this work demonstrates herein a universal approach to in situ craft MOx-MXene (M: Ti, V, and Nb) heterostructures as heavy and multifunctional hosts to harvest good battery performances with synchronous polysulfide immobilization and conversion. Theoretical calculations indicate that the in situ implanted oxides boost the reaction kinetics of polysulfide transformation without affecting the intrinsic conductivity of MXene. As a result, the representative VOx-V2C/S electrode enables a high volumetric capacity (offering 1645.98 mAh cm-3 at 0.2 C) and cycling stability (retaining 631.17 mAh cm-3 after 1500 cycles at 2.0 C with a capacity decay of 0.03% per cycle). More encouragingly, 3D-printed sulfur electrodes harnessing VOx-V2C hosts readily harvest an areal capacity of 9.74 mAh cm-2 at 0.05 C under an elevated sulfur loading of 10.78 mg cm-2, holding promise for the development of practically viable Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI