Well Condition Diagnosis of Sucker-Rod Pumping Wells Based on the Machine Learning of Electrical Power Curves in the Context of IoT

抽油杆 油井 背景(考古学) 功率(物理) 电力 机械工程 工程类 地质学 石油工程 量子力学 物理 古生物学
作者
Cai Wang,Chunming Xiong,Hanjun Zhao,Ruidong Zhao,Junfeng Shi,Jianjun Zhang,Xishun Zhang,Hongxing Huang,Shiwen Chen,Yi Peng,Yizhen Sun
标识
DOI:10.4043/30326-ms
摘要

Abstract Sucker-rod pumping wells are the most widely used producing wells in China. 94% of the 200,000 oil wells in CNPC are sucker-rod pumping wells. It is urgent to reduce the cost of every single well based on the well diagnosis and optimization methods under the background of low oil price and the IoT. Rich working experience of field engineers could help them diagnose some conspicuous abnormal well conditions by electrical power curves easily, but the scientific diagnosis methods have still not be established, and the potential of electrical power curves of the producing well is far from being fully tapped. The aim of this work is to diagnose the working condition of the sucker-rod pumping wells both on and under the ground based on the data from electrical power curves by machine learning. The methods shaped by the learning of the electrical power curves from nearly 600 wells mainly separate into 3 steps. The first is the diagnosis of conspicuous abnormal well conditions such as motor belt burning, motor belt slippage, two phase electrics, upper rod break, lower rod break et al. The prediction experience was obtained from the statistical learning of the mean and variance values after we equally split the 600 power curve values into 10 sub-groups. The second is the diagnosis of complex abnormal well conditions such as abnormal mechanical sound, slight tube leak, severe tube leak, pump stuck et al based on the combination of statistics and template vs diagnosed sample analysis. The third is the diagnosis of pumping conditions characterized by the remarkable prediction ability via deep learning. A surface well condition database was established and the corresponding electrical power curves were marked in real time. Based on the CNN technology, the model could recognize different pump working conditions such as insufficient liquid, gas influence, traveling valve leak, standing valve leak et al very well. The work has been applied in the oil fields of Jilin and Daqing. The method has been tested on nearly thousand hundreds of producing well utilizing sucker rod pumping system. The model demonstrates very high accuracy with almost 90% similarity to the result diagnosed by corresponding pump dynamometers for large sample and 94% of abnormal well working conditions for small sample. What’s more, the work would reduce millions of investment on the sensors, equipment and manpower for the management of producing wells in CNPC each year in the context of industrial IoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助TT2022采纳,获得10
刚刚
Doctor甜发布了新的文献求助10
1秒前
希望天下0贩的0应助yue采纳,获得10
2秒前
彭于晏应助snowskating采纳,获得10
4秒前
6秒前
搜集达人应助俭朴夜香采纳,获得10
9秒前
善良的剑通应助多情老三采纳,获得10
10秒前
LANER发布了新的文献求助10
10秒前
科研通AI5应助大豆cong采纳,获得30
11秒前
11秒前
14秒前
思源应助爱科研的豆芽采纳,获得10
15秒前
snowskating发布了新的文献求助10
16秒前
18秒前
xiao金发布了新的文献求助10
19秒前
爱科研的豆芽完成签到,获得积分10
20秒前
22秒前
yangyog发布了新的文献求助10
22秒前
脸小呆呆发布了新的文献求助10
23秒前
27秒前
myl发布了新的文献求助10
28秒前
29秒前
淡然的蚂蚁完成签到,获得积分10
32秒前
眼睛大的胡萝卜完成签到 ,获得积分10
33秒前
酷波er应助杨震采纳,获得30
35秒前
稳稳完成签到,获得积分10
36秒前
zsyf完成签到,获得积分10
37秒前
科研通AI5应助淡然的蚂蚁采纳,获得10
37秒前
wwho_O完成签到 ,获得积分10
37秒前
40秒前
45秒前
赵欢欢发布了新的文献求助30
46秒前
48秒前
超级的妙晴完成签到 ,获得积分10
52秒前
汉堡包应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
情怀应助科研通管家采纳,获得10
56秒前
58秒前
58秒前
zhinian完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648