Photocatalytic water splitting with a quantum efficiency of almost unity

分解水 量子效率 光催化 析氧 光催化分解水 制氢 能量转换效率 半导体 材料科学 化学物理 化学 光电子学 物理化学 催化作用 生物化学 有机化学 电化学 电极
作者
Tsuyoshi Takata,Junzhe Jiang,Yoshihisa Sakata,Mamiko Nakabayashi,Naoya Shibata,Vikas Nandal,Kazuhiko Seki,Takashi Hisatomi,Kazunari Domen
出处
期刊:Nature [Nature Portfolio]
卷期号:581 (7809): 411-414 被引量:1677
标识
DOI:10.1038/s41586-020-2278-9
摘要

Overall water splitting, evolving hydrogen and oxygen in a 2:1 stoichiometric ratio, using particulate photocatalysts is a potential means of achieving scalable and economically viable solar hydrogen production. To obtain high solar energy conversion efficiency, the quantum efficiency of the photocatalytic reaction must be increased over a wide range of wavelengths and semiconductors with narrow bandgaps need to be designed. However, the quantum efficiency associated with overall water splitting using existing photocatalysts is typically lower than ten per cent1,2. Thus, whether a particulate photocatalyst can enable a quantum efficiency of 100 per cent for the greatly endergonic water-splitting reaction remains an open question. Here we demonstrate overall water splitting at an external quantum efficiency of up to 96 per cent at wavelengths between 350 and 360 nanometres, which is equivalent to an internal quantum efficiency of almost unity, using a modified aluminium-doped strontium titanate (SrTiO3:Al) photocatalyst3,4. By selectively photodepositing the cocatalysts Rh/Cr2O3 (ref. 5) and CoOOH (refs. 3,6) for the hydrogen and oxygen evolution reactions, respectively, on different crystal facets of the semiconductor particles using anisotropic charge transport, the hydrogen and oxygen evolution reactions could be promoted separately. This enabled multiple consecutive forward charge transfers without backward charge transfer, reaching the upper limit of quantum efficiency for overall water splitting. Our work demonstrates the feasibility of overall water splitting free from charge recombination losses and introduces an ideal cocatalyst/photocatalyst structure for efficient water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccr02完成签到 ,获得积分10
2秒前
3秒前
syr完成签到 ,获得积分0
4秒前
6秒前
情怀应助海绵宝宝采纳,获得10
6秒前
7秒前
raziel完成签到,获得积分10
8秒前
科研通AI2S应助GONGLI采纳,获得10
9秒前
13秒前
CodeCraft应助我的小k8采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
单纯的文龙应助科研通管家采纳,获得100
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
海绵宝宝发布了新的文献求助10
18秒前
wshwx发布了新的文献求助10
23秒前
24秒前
Lojong完成签到,获得积分10
24秒前
25秒前
25秒前
W~舞完成签到,获得积分10
28秒前
我的小k8发布了新的文献求助10
29秒前
Green发布了新的文献求助10
31秒前
魔幻的小蘑菇完成签到 ,获得积分10
31秒前
科研通AI2S应助电麻木采纳,获得10
37秒前
monned完成签到 ,获得积分10
40秒前
40秒前
fangyifang发布了新的文献求助10
40秒前
42秒前
田様应助ltt采纳,获得10
43秒前
43秒前
张涛发布了新的文献求助10
45秒前
45秒前
46秒前
47秒前
完美世界应助axiyay采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321789
关于积分的说明 10207888
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666556
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872