Recent advances in knowledge discovery for heterogeneous catalysis using machine learning

均方误差 人工神经网络 计算机科学 机器学习 人工智能 启发式 化学 材料科学 数学 统计
作者
M. Erdem Günay,Ramazan Yıldırım
出处
期刊:Catalysis Reviews-science and Engineering [Informa]
卷期号:63 (1): 120-164 被引量:109
标识
DOI:10.1080/01614940.2020.1770402
摘要

The use of machine learning (ML) in catalysis has been significantly increased in recent years due to the astonishing developments in data processing technologies and the accumulation of a large amount of data in published literature and databases. The data generated in house or extracted from external sources have been analyzed using various ML techniques to see patterns, develop models for prediction and deduce heuristic rules for the future. This communication aims to review the works involving knowledge discovery in catalysis using ML techniques; the basic principles, common tools and implementation of ML in catalysis are also summarized.Abbreviations: ANN: Artificial neural network; ASLA: Atomistic structure learning algorithm; CatApp: A web application heterogeneous catalysis; CSD: Cambridge Structural Database; co-pre: Co-precipitation; Cx: Fraction of curvature; DFT: Density functional theory; DT: Decision tree; ∆ECO: CO adsorption energy; Fx: Fraction of facets; MBTR: Many-body tensor representation; ML: Machine learning; MOF: Metal-organic framework; Nx: Number of atoms; PC: Polymerized complex; Rx: Radius; R2: Coefficient of determination; RMSE: Root mean square error; RSM: Response surface methodology; SG: Sol-gel; SISSO: Sure independence screening and sparsifying operator; SIMELS: Simplified molecular-input line-entry system; SOAP: Smooth overlap of atomic positions; SSR: Solid-state reaction; T: Temperature; t: Time; τ: Atomic deposition rate; WIPO: World Intellectual Property Organization; WOS: Web of Science; XANES: X-ray absorption near-edge structure
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CFC12发布了新的文献求助10
1秒前
1秒前
科研渣渣发布了新的文献求助30
1秒前
2秒前
日月完成签到 ,获得积分10
2秒前
老实的以柳完成签到 ,获得积分10
2秒前
DL发布了新的文献求助10
2秒前
jia发布了新的文献求助10
2秒前
gaowei完成签到,获得积分10
2秒前
哈哈不哈哈完成签到,获得积分10
3秒前
3秒前
Man发布了新的文献求助10
3秒前
dddd发布了新的文献求助10
3秒前
Thinkol发布了新的文献求助10
4秒前
5秒前
乐乐应助吃葡萄的小魔仙采纳,获得10
6秒前
幽默果汁发布了新的文献求助100
6秒前
6秒前
李健的小迷弟应助李rh采纳,获得10
7秒前
skr完成签到,获得积分10
7秒前
muyongxin发布了新的文献求助10
8秒前
bkagyin应助坚持坚持采纳,获得10
8秒前
JamesPei应助隐形的大米采纳,获得10
8秒前
香蕉觅云应助mou采纳,获得10
8秒前
隐形曼青应助Z_jx采纳,获得10
9秒前
9秒前
李健的粉丝团团长应助dddd采纳,获得10
9秒前
香蕉觅云应助13采纳,获得10
9秒前
journey完成签到 ,获得积分10
10秒前
xiao_J发布了新的文献求助10
10秒前
奋斗的雁枫应助一一采纳,获得10
10秒前
orixero应助Lukomere采纳,获得10
11秒前
11秒前
sxwzssyj完成签到,获得积分10
11秒前
嘟嘟完成签到,获得积分10
12秒前
ccc完成签到,获得积分10
12秒前
安静的剑完成签到,获得积分10
12秒前
Stella应助乐观的颦采纳,获得10
13秒前
无聊的太清完成签到,获得积分10
13秒前
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240