肌萎缩侧索硬化
C9orf72
生物
细胞生物学
线粒体
平衡
表型
运动神经元
失智症
三核苷酸重复扩增
神经科学
遗传学
疾病
痴呆
病理
医学
基因
等位基因
脊髓
作者
Shuangxi Li,Zhihao Wu,Yu Li,Ishaq Tantray,Diego De Stefani,Andrea Mattarei,Gopinath Krishnan,Fen‐Biao Gao,Hannes Vogel,Bingwei Lu
出处
期刊:Cell Reports
[Cell Press]
日期:2020-08-01
卷期号:32 (5): 107989-107989
被引量:41
标识
DOI:10.1016/j.celrep.2020.107989
摘要
Amyotrophic lateral sclerosis (ALS) manifests pathological changes in motor neurons and various other cell types. Compared to motor neurons, the contribution of the other cell types to the ALS phenotypes is understudied. G4C2 repeat expansion in C9ORF72 is the most common genetic cause of ALS along with frontotemporal dementia (C9-ALS/FTD), with increasing evidence supporting repeat-encoded poly(GR) in disease pathogenesis. Here, we show in Drosophila muscle that poly(GR) enters mitochondria and interacts with components of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), altering MICOS dynamics and intra-subunit interactions. This impairs mitochondrial inner membrane structure, ion homeostasis, mitochondrial metabolism, and muscle integrity. Similar mitochondrial defects are observed in patient fibroblasts. Genetic manipulation of MICOS components or pharmacological restoration of ion homeostasis with nigericin effectively rescue the mitochondrial pathology and disease phenotypes in both systems. These results implicate MICOS-regulated ion homeostasis in C9-ALS pathogenesis and suggest potential new therapeutic strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI