Defect Engineering in Photocatalytic Nitrogen Fixation

光催化 固氮 催化作用 氮气 半导体 纳米技术 氨生产 化学 吸附 材料科学 合理设计 化学工程 有机化学 光电子学 工程类
作者
Run Shi,Yunxuan Zhao,Geoffrey I. N. Waterhouse,Shuai Zhang,Tierui Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:9 (11): 9739-9750 被引量:437
标识
DOI:10.1021/acscatal.9b03246
摘要

Approximately 2% of the energy consumed by humans each year is used to make nitrogen-based fertilizers, with ammonia (NH3) production being the most significant contributor to this energy demand. Currently, NH3 is synthesized by the Haber–Bosch process, an energy-intensive synthesis requiring both high temperatures (400–500 °C) and pressures (150–250 atm) to achieve meaningful rates of N2 conversion. As a means of reducing the energy input and carbon footprint of NH3 synthesis, researchers are now seeking more environmentally friendly approaches for N2 fixation. Photocatalytic NH3 synthesis, using sunlight and a semiconductor photocatalyst, represents one of the more promising strategies for reducing N2 to NH3 (typically employing water as the reducing agent). Rates of photocatalytic NH3 synthesis are currently too low to justify serious practical consideration, which can be traced to the sluggish adsorption/activation kinetics of the N2 molecule on semiconductor catalyst surfaces under ambient temperature and pressure conditions. Recent studies have highlighted the potential of defect engineering for boosting the light-harvesting, charge separation, and adsorption characteristics of semiconductor photocatalysts in reductive processes such as water splitting and CO2 reduction. Herein, we explore the potential of defect engineering to similarly enhance photocatalytic N2 fixation. Special emphasis is placed on structure modulation (especially 2D materials and porous structures) and interface engineering (including vacancy creation, metal doping, and strain) for enhancing N2 activation and conversion. The overarching aim of this Perspective is to provide a snapshot of recent breakthroughs in the rational design of semiconductor photocatalysts for NH3 synthesis, thus providing a useful scaffold for future research in this very exciting and emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcious完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
3秒前
杨思睿发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
尤里发布了新的文献求助10
5秒前
Jasper应助WWW采纳,获得10
5秒前
专一的鸡翅完成签到 ,获得积分10
5秒前
5秒前
Methylation发布了新的文献求助10
5秒前
YAN发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
摘星驳回了赘婿应助
7秒前
7秒前
67n发布了新的文献求助10
7秒前
田様应助syan采纳,获得10
8秒前
科研川完成签到,获得积分10
9秒前
Orijump完成签到,获得积分10
10秒前
头头发布了新的文献求助30
10秒前
10秒前
Singularity应助zhaoshuo采纳,获得10
10秒前
tt发布了新的文献求助30
11秒前
11秒前
11秒前
lll完成签到,获得积分10
11秒前
CipherSage应助直率的雪巧采纳,获得10
12秒前
mcw发布了新的文献求助10
12秒前
杨思睿完成签到,获得积分10
12秒前
彼岸发布了新的文献求助10
13秒前
希望天下0贩的0应助YAN采纳,获得10
16秒前
16秒前
Owen应助安静画板采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774735
求助须知:如何正确求助?哪些是违规求助? 5619318
关于积分的说明 15436713
捐赠科研通 4907207
什么是DOI,文献DOI怎么找? 2640573
邀请新用户注册赠送积分活动 1588470
关于科研通互助平台的介绍 1543351