Six‐way decomposition of causal effects: Unifying mediation and mechanistic interaction

反事实思维 调解 因果推理 分解 因果模型 计算机科学 计量经济学 分解法(排队论) 数学 统计 化学 心理学 社会心理学 政治学 有机化学 法学
作者
Yen‐Tsung Huang,An‐Shun Tai,Meng‐Ying Chou,Geng‐Xian Lin,Sheng‐Hsuan Lin
出处
期刊:Statistics in Medicine [Wiley]
卷期号:39 (27): 4051-4068 被引量:6
标识
DOI:10.1002/sim.8708
摘要

The sufficient component cause (SCC) model and counterfactual model are two common methods for causal inference, each with their own advantages: the SCC model allows the mechanistic interaction to be detailed, whereas the counterfactual model features a systemic framework for quantifying causal effects. Hence, integrating the SCC and counterfactual models may facilitate the conceptualization of causation. Based on the marginal SCC (mSCC) model, we propose a novel counterfactual mSCC framework that includes the steps of definition, identification, and estimation. We further propose a six‐way effect decomposition for assessing mediation and the mechanistic interaction. The results demonstrate that when all variables are binary, the six‐way decomposition is an extension of four‐way decomposition and that without agonism, the six‐way decomposition is reduced to four‐way decomposition. To illustrate the utility of the proposed decomposition, we apply it to a Taiwanese cohort to examine the mechanism of hepatitis C virus (HCV)‐induced hepatocellular carcinoma (HCC) with liver inflammation measured by alanine aminotransferase (ALT) as a mediator. Among the HCV‐induced HCC cases, 62.27% are not explained by either mediation or interaction in relation to ALT; 9.32% are purely mediated by ALT; 16.53% are caused by the synergistic effect of HCV and ALT; and 9.31% are due to the mediated synergistic effect of HCV and ALT. In summary, we introduce an SCC model framework based on counterfactual theory and detail the required identification assumptions and estimation procedures; we also propose a six‐way effect decomposition to unify mediation and mechanistic interaction analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助八月宁静采纳,获得10
刚刚
上官若男应助万松辉采纳,获得10
1秒前
77发布了新的文献求助10
3秒前
研友_VZG7GZ应助yzm采纳,获得10
3秒前
可爱的函函应助应急食品采纳,获得10
4秒前
5秒前
汐颜紫雨完成签到,获得积分10
6秒前
7秒前
7秒前
fuyu98完成签到,获得积分10
8秒前
8秒前
mashibeo发布了新的文献求助30
10秒前
赵俊博发布了新的文献求助10
10秒前
盐焗小星球完成签到 ,获得积分10
10秒前
昏睡的朝雪完成签到,获得积分20
10秒前
GGMJ发布了新的文献求助10
11秒前
Aikesi完成签到,获得积分10
11秒前
lw不好找完成签到,获得积分10
12秒前
刻苦念桃发布了新的文献求助10
12秒前
pluto应助yuanying采纳,获得10
13秒前
万松辉发布了新的文献求助10
13秒前
14秒前
Qwe发布了新的文献求助10
14秒前
小邓完成签到,获得积分10
16秒前
八月宁静发布了新的文献求助10
18秒前
哪位完成签到,获得积分10
19秒前
科研通AI6应助mera采纳,获得10
19秒前
mashibeo完成签到,获得积分0
19秒前
完美世界应助fangplus采纳,获得10
19秒前
斯文败类应助GGMJ采纳,获得10
20秒前
20秒前
孤独的凤发布了新的文献求助10
20秒前
胡导家的菜狗完成签到 ,获得积分10
21秒前
华仔应助李杰采纳,获得10
22秒前
桐桐应助Evander采纳,获得10
23秒前
胡亚楠完成签到,获得积分10
23秒前
ysy完成签到,获得积分10
24秒前
JamesPei应助哈哈哈采纳,获得10
25秒前
ZRR发布了新的文献求助10
26秒前
Cy-coolorgan发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073