生物膜
法尼醇
群体感应
生物
微生物学
细菌
铜绿假单胞菌
细胞外
恶臭假单胞菌
真菌
细胞生物学
生物化学
植物
遗传学
作者
Alberto Ramos Ruiz,Marta Herráez,Stefanie Bernardette Costa‐Gutierrez,María Antonia Molina‐Henares,Marı́a Jesús Martı́nez,Manuel Espinosa‐Urgel,Jorge Barriuso
标识
DOI:10.1111/1462-2920.15444
摘要
Summary Interkingdom communication is of particular relevance in polymicrobial biofilms. In this work, the ability of the fungus Ophiostoma piceae to form biofilms individually and in consortium with the bacterium Pseudomonas putida , as well as the effect of fungal and bacterial signal molecules on the architecture of the biofilms was evaluated. Pseudomonas putida KT2440 is able to form biofilms through the secretion of exopolysaccharides and two large extracellular adhesion proteins, LapA and LapF. It has two intercellular signalling systems, one mediated by dodecanoic acid and an orphan LuxR receptor that could participate in the response to AHL‐type quorum sensing molecules (QSMs). Furthermore, the dimorphic fungus O . piceae uses farnesol as QSM to control its yeast to hyphae morphological transition. Results show for the first time the ability of this fungus to form biofilms alone and in mixed cultures with the bacterium. Biofilms were induced by bacterial and fungal QSMs. The essential role of LapA‐LapF proteins in the architecture of biofilms was corroborated, LapA was induced by farnesol and dodecanol, while LapF by 3‐oxo‐C6‐HSL and 3‐oxo‐C12‐HSL. Our results indicate that fungal signals can induce a transient rise in the levels of the secondary messenger c‐di‐GMP, which control biofilm formation and architecture.
科研通智能强力驱动
Strongly Powered by AbleSci AI