自编码
生成语法
嵌入
计算机科学
生成模型
扩散
推论
等价(形式语言)
人工智能
缩放比例
统计物理学
变压器
算法
理论计算机科学
复杂系统
解耦(概率)
生物系统
电磁屏蔽
分子
等变映射
反常扩散
编码(内存)
作者
Joshi, Chaitanya K.,Fu Xiang,Liao, Yi-Lun,Gharakhanyan, Vahe,Miller, Benjamin Kurt,Sriram, Anuroop,Ulissi, Zachary W.
出处
期刊:Cornell University - arXiv
日期:2025-03-07
被引量:2
标识
DOI:10.48550/arxiv.2503.03965
摘要
Diffusion models are the standard toolkit for generative modelling of 3D atomic systems. However, for different types of atomic systems -- such as molecules and materials -- the generative processes are usually highly specific to the target system despite the underlying physics being the same. We introduce the All-atom Diffusion Transformer (ADiT), a unified latent diffusion framework for jointly generating both periodic materials and non-periodic molecular systems using the same model: (1) An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and (2) A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. Experiments on MP20, QM9 and GEOM-DRUGS datasets demonstrate that jointly trained ADiT generates realistic and valid molecules as well as materials, obtaining state-of-the-art results on par with molecule and crystal-specific models. ADiT uses standard Transformers with minimal inductive biases for both the autoencoder and diffusion model, resulting in significant speedups during training and inference compared to equivariant diffusion models. Scaling ADiT up to half a billion parameters predictably improves performance, representing a step towards broadly generalizable foundation models for generative chemistry. Open source code: https://github.com/facebookresearch/all-atom-diffusion-transformer
科研通智能强力驱动
Strongly Powered by AbleSci AI