降维
非线性降维
拉普拉斯算子
歧管(流体力学)
地点
扩散图
聚类分析
歧管对齐
代表(政治)
数学
图形
拉普拉斯矩阵
人工智能
连接(主束)
等距映射
计算机科学
理论计算机科学
数学分析
几何学
机械工程
语言学
哲学
政治
法学
政治学
工程类
作者
Mikhail Belkin,Partha Niyogi
标识
DOI:10.1162/089976603321780317
摘要
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low-dimensional manifold embedded in a high-dimensional space. Drawing on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for representing the high-dimensional data. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality-preserving properties and a natural connection to clustering. Some potential applications and illustrative examples are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI