已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Standard Plane Localization in Ultrasound by Radial Component Model and Selective Search

人工智能 计算机科学 超声波 随机森林 脐静脉 计算机视觉 组分(热力学) 钥匙(锁) 模式识别(心理学) 放射科 医学 物理 生物 热力学 生物化学 计算机安全 体外
作者
Dong Ni,Xin Yang,Xin Chen,Chien-Ting Chin,Siping Chen,Pheng‐Ann Heng,Shengli Li,Jing Qin,Tianfu Wang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:40 (11): 2728-2742 被引量:63
标识
DOI:10.1016/j.ultrasmedbio.2014.06.006
摘要

Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
珊珊完成签到,获得积分10
1秒前
tinatian270发布了新的文献求助10
1秒前
珊珊发布了新的文献求助10
3秒前
晟sheng发布了新的文献求助10
6秒前
神勇的老五完成签到 ,获得积分10
8秒前
谦让的雅青完成签到 ,获得积分10
9秒前
完美大神完成签到 ,获得积分10
9秒前
情怀应助珊珊采纳,获得10
9秒前
12秒前
nn完成签到 ,获得积分10
14秒前
14秒前
18秒前
坚强藏鸟发布了新的文献求助10
21秒前
25秒前
28秒前
29秒前
29秒前
Lee发布了新的文献求助10
30秒前
赘婿应助小小采纳,获得10
31秒前
31秒前
田様应助晟sheng采纳,获得10
31秒前
32秒前
li发布了新的文献求助10
34秒前
小白发布了新的文献求助10
35秒前
lll发布了新的文献求助10
36秒前
科研通AI5应助落寞代桃采纳,获得10
37秒前
风中凡霜发布了新的文献求助10
37秒前
TH发布了新的文献求助10
37秒前
37秒前
38秒前
39秒前
星辰大海应助稳重以冬采纳,获得10
40秒前
于是乎发布了新的文献求助10
43秒前
zjp发布了新的文献求助10
44秒前
daodao发布了新的文献求助10
44秒前
46秒前
善学以致用应助TH采纳,获得10
47秒前
47秒前
SYLH应助段佳佳采纳,获得50
48秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499