An Automatic Detection System of Lung Nodule Based on Multigroup Patch-Based Deep Learning Network

假阳性悖论 计算机科学 人工智能 结核(地质) 卷积神经网络 深度学习 特征提取 分割 特征(语言学) 模式识别(心理学) 滤波器(信号处理) 图像分割 计算机视觉 古生物学 语言学 哲学 生物
作者
Hongyang Jiang,He Ma,Wei Qian,Mengdi Gao,Yan Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 1227-1237 被引量:250
标识
DOI:10.1109/jbhi.2017.2725903
摘要

High-efficiency lung nodule detection dramatically contributes to the risk assessment of lung cancer. It is a significant and challenging task to quickly locate the exact positions of lung nodules. Extensive work has been done by researchers around this domain for approximately two decades. However, previous computer-aided detection (CADe) schemes are mostly intricate and time-consuming since they may require more image processing modules, such as the computed tomography image transformation, the lung nodule segmentation, and the feature extraction, to construct a whole CADe system. It is difficult for these schemes to process and analyze enormous data when the medical images continue to increase. Besides, some state of the art deep learning schemes may be strict in the standard of database. This study proposes an effective lung nodule detection scheme based on multigroup patches cut out from the lung images, which are enhanced by the Frangi filter. Through combining two groups of images, a four-channel convolution neural networks model is designed to learn the knowledge of radiologists for detecting nodules of four levels. This CADe scheme can acquire the sensitivity of 80.06% with 4.7 false positives per scan and the sensitivity of 94% with 15.1 false positives per scan. The results demonstrate that the multigroup patch-based learning system is efficient to improve the performance of lung nodule detection and greatly reduce the false positives under a huge amount of image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Eason小川发布了新的文献求助10
1秒前
sc完成签到,获得积分10
1秒前
1秒前
andrele发布了新的文献求助100
3秒前
科研通AI5应助清秀初柳采纳,获得30
3秒前
铅笔完成签到,获得积分10
4秒前
5秒前
半柚应助小纯牛奶采纳,获得10
5秒前
5秒前
大大小小完成签到,获得积分10
5秒前
俭朴的思菱完成签到,获得积分20
5秒前
义气山水发布了新的文献求助10
6秒前
解翎发布了新的文献求助10
8秒前
xyliu完成签到,获得积分10
8秒前
10秒前
二哈发布了新的文献求助10
10秒前
英姑应助会撒娇的可乐采纳,获得10
10秒前
陶瓷小罐发布了新的文献求助10
10秒前
10秒前
乱把闲云揉碎完成签到,获得积分10
11秒前
大个应助琦琦子采纳,获得10
13秒前
FOREST完成签到,获得积分10
13秒前
谢永生发布了新的文献求助10
14秒前
诚心的小鸭子完成签到,获得积分10
14秒前
ddfighting完成签到,获得积分10
16秒前
科研狂魔发布了新的文献求助10
16秒前
倾卿如玉完成签到 ,获得积分10
16秒前
Michael完成签到,获得积分10
17秒前
17秒前
11发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
XY完成签到 ,获得积分10
20秒前
大个应助Eason小川采纳,获得10
21秒前
SciGPT应助柚子采纳,获得30
21秒前
22秒前
yxy303256651发布了新的文献求助10
22秒前
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
微晶石墨深加工及应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833381
求助须知:如何正确求助?哪些是违规求助? 3375725
关于积分的说明 10490498
捐赠科研通 3095373
什么是DOI,文献DOI怎么找? 1704319
邀请新用户注册赠送积分活动 819975
科研通“疑难数据库(出版商)”最低求助积分说明 771697