Convolutional SVM Networks for Object Detection in UAV Imagery

计算机科学 卷积神经网络 支持向量机 人工智能 模式识别(心理学) 特征提取 特征(语言学) 目标检测 计算机视觉 遥感 语言学 地质学 哲学
作者
Yakoub Bazi,Farid Melgani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (6): 3107-3118 被引量:137
标识
DOI:10.1109/tgrs.2018.2790926
摘要

Nowadays, unmanned aerial vehicles (UAVs) are viewed as effective acquisition platforms for several civilian applications. They can acquire images with an extremely high level of spatial detail compared to standard remote sensing platforms. However, these images are highly affected by illumination, rotation, and scale changes, which further increases the complexity of analysis compared to those obtained using standard remote sensing platforms. In this paper, we introduce a novel convolutional support vector machine (CSVM) network for the analysis of this type of imagery. Basically, the CSVM network is based on several alternating convolutional and reduction layers ended by a linear SVM classification layer. The convolutional layers in CSVM rely on a set of linear SVMs as filter banks for feature map generation. During the learning phase, the weights of the SVM filters are computed through a forward supervised learning strategy unlike the backpropagation algorithm widely used in standard convolutional neural networks (CNNs). This makes the proposed CSVM particularly suitable for detecting problems characterized by very limited training sample availability. The experiments carried out on two UAV data sets related to vehicles and solar-panel detection issues, with a 2-cm resolution, confirm the promising capability of the proposed CSVM network compared to recent state-of-the-art solutions based on pretrained CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳善良的胖蜜蜂完成签到,获得积分10
刚刚
1秒前
3秒前
3秒前
vicky完成签到,获得积分10
3秒前
4秒前
Jasper应助陈炫铭采纳,获得10
5秒前
皖医梁朝伟完成签到 ,获得积分10
6秒前
田様应助小周采纳,获得10
7秒前
Tiger发布了新的文献求助10
8秒前
zzt发布了新的文献求助10
8秒前
9秒前
小花生完成签到 ,获得积分10
9秒前
追梦完成签到 ,获得积分10
10秒前
11秒前
圣诞节完成签到,获得积分10
11秒前
单纯的又菱完成签到,获得积分10
12秒前
13秒前
阳光莲小蓬完成签到,获得积分20
13秒前
111111完成签到,获得积分10
14秒前
dzx发布了新的文献求助10
14秒前
茜茜哥哥完成签到,获得积分10
14秒前
15秒前
大模型应助manan采纳,获得10
15秒前
玲儿发布了新的文献求助10
16秒前
情怀应助奋斗的觅山采纳,获得10
16秒前
李昕123发布了新的文献求助10
17秒前
17秒前
19秒前
qingxinhuo完成签到 ,获得积分10
21秒前
22秒前
22秒前
大模型应助dzx采纳,获得10
23秒前
ShiRz发布了新的文献求助10
23秒前
24秒前
honghong1992发布了新的文献求助10
24秒前
鹿小新发布了新的文献求助10
24秒前
wishes完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781157
求助须知:如何正确求助?哪些是违规求助? 3326652
关于积分的说明 10227891
捐赠科研通 3041760
什么是DOI,文献DOI怎么找? 1669590
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751