A data-driven method of health monitoring for spacecraft

航天器 异常检测 主成分分析 数据挖掘 希尔伯特-黄变换 故障检测与隔离 统计的 遥测 异常(物理) 断层(地质) 计算机科学 工程类 可靠性工程 人工智能 统计 数学 能量(信号处理) 航空航天工程 物理 地质学 地震学 执行机构 凝聚态物理
作者
Kang Xu,Dechang Pi
出处
期刊:Aircraft Engineering and Aerospace Technology [Emerald Publishing Limited]
卷期号:90 (2): 435-451 被引量:4
标识
DOI:10.1108/aeat-08-2016-0130
摘要

Purpose The purpose of this paper is to detect the occurrence of anomaly and fault in a spacecraft, investigate various tendencies of telemetry parameters and evaluate the operation state of the spacecraft to monitor the health of the spacecraft. Design/methodology/approach This paper proposes a data-driven method (empirical mode decomposition-sample entropy-principal component analysis [EMD-SE-PCA]) for monitoring the health of the spacecraft, where EMD is used to decompose telemetry data and obtain the trend items, SE is utilised to calculate the sample entropies of trend items and extract the characteristic data and squared prediction error and statistic contribution rate are analysed using PCA to monitor the health of the spacecraft. Findings Experimental results indicate that the EMD-SE-PCA method could detect characteristic parameters that appear abnormally before the anomaly or fault occurring, could provide an abnormal early warning time before anomaly or fault appearing and summarise the contribution of each parameter more accurately than other fault detection methods. Practical implications The proposed EMD-SE-PCA method has high level of accuracy and efficiency. It can be used in monitoring the health of a spacecraft, detecting the anomaly and fault, avoiding them timely and efficiently. Also, the EMD-SE-PCA method could be further applied for monitoring the health of other equipment (e.g. attitude control and orbit control system) in spacecraft and satellites. Originality/value The paper provides a data-driven method EMD-SE-PCA to be applied in the field of practical health monitoring, which could discover the occurrence of anomaly or fault timely and efficiently and is very useful for spacecraft health diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助10
1秒前
骆驼刺发布了新的文献求助10
1秒前
move完成签到 ,获得积分10
2秒前
yolodys完成签到,获得积分10
2秒前
dxz完成签到,获得积分10
2秒前
小马甲应助weirdo采纳,获得30
2秒前
悲凉的忆寒完成签到,获得积分20
2秒前
冰雨Flory完成签到,获得积分10
3秒前
烂漫含雁发布了新的文献求助10
3秒前
4秒前
naturehome完成签到,获得积分10
4秒前
木昜完成签到,获得积分10
5秒前
wanci应助HM采纳,获得10
5秒前
Rz发布了新的文献求助40
5秒前
6秒前
赘婿应助LYT采纳,获得10
6秒前
6秒前
6秒前
7秒前
iCloud完成签到,获得积分10
7秒前
隐形曼青应助博修采纳,获得10
7秒前
8秒前
美啊美完成签到,获得积分10
8秒前
小文完成签到,获得积分20
8秒前
多多完成签到,获得积分10
9秒前
9秒前
打工牛牛应助jfy采纳,获得10
9秒前
caiia完成签到,获得积分10
9秒前
健忘傲柏完成签到,获得积分10
9秒前
鹿子默完成签到,获得积分10
9秒前
温言完成签到,获得积分10
10秒前
小臭臭完成签到 ,获得积分10
10秒前
zzzz发布了新的文献求助10
10秒前
11秒前
11秒前
烂漫含雁完成签到,获得积分20
11秒前
lxy发布了新的文献求助10
11秒前
12秒前
百里烬言发布了新的文献求助10
13秒前
风轻云淡发布了新的文献求助20
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792901
求助须知:如何正确求助?哪些是违规求助? 3337465
关于积分的说明 10285340
捐赠科研通 3054138
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561