清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.

人工智能 深度学习 计算机科学 机器学习 循环神经网络 卷积神经网络 深信不疑网络 领域(数学) 水准点(测量) 强化学习 人工神经网络 大地测量学 数学 纯数学 地理
作者
Zahangir Alom,Tarek M. Taha,Christopher Yakopcic,Stefan Westberg,Paheding Sidike,Mst Shamima Nasrin,Brian C. Van Essen,Abdul Ahad S. Awwal,Vijayan K. Asari
出处
期刊:Cornell University - arXiv 被引量:68
摘要

Deep learning has demonstrated tremendous success in variety of application domains in the past few years. This new field of machine learning has been growing rapidly and applied in most of the application domains with some new modalities of applications, which helps to open new opportunity. There are different methods have been proposed on different category of learning approaches, which includes supervised, semi-supervised and un-supervised learning. The experimental results show state-of-the-art performance of deep learning over traditional machine learning approaches in the field of Image Processing, Computer Vision, Speech Recognition, Machine Translation, Art, Medical imaging, Medical information processing, Robotics and control, Bio-informatics, Natural Language Processing (NLP), Cyber security, and many more. This report presents a brief survey on development of DL approaches, including Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) including Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). In addition, we have included recent development of proposed advanced variant DL techniques based on the mentioned DL approaches. Furthermore, DL approaches have explored and evaluated in different application domains are also included in this survey. We have also comprised recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys have published on Deep Learning in Neural Networks [1, 38] and a survey on RL [234]. However, those papers have not discussed the individual advanced techniques for training large scale deep learning models and the recently developed method of generative models [1].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
14秒前
16秒前
伪科学家发布了新的文献求助10
19秒前
米虫完成签到,获得积分10
26秒前
28秒前
斯文的苡完成签到,获得积分10
29秒前
better完成签到,获得积分10
31秒前
伪科学家完成签到,获得积分20
31秒前
merrylake完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
37秒前
39秒前
47秒前
52秒前
52秒前
1分钟前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
1分钟前
1分钟前
webmaster完成签到,获得积分10
1分钟前
天天快乐应助Monet采纳,获得10
1分钟前
1分钟前
1分钟前
muriel完成签到,获得积分0
1分钟前
1分钟前
1分钟前
Monet完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Monet发布了新的文献求助10
1分钟前
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
啦啦啦啦完成签到,获得积分10
2分钟前
豆浆来点蒜泥完成签到,获得积分0
2分钟前
2分钟前
高分求助中
Organic Chemistry 20086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4294886
求助须知:如何正确求助?哪些是违规求助? 3820993
关于积分的说明 11962636
捐赠科研通 3463517
什么是DOI,文献DOI怎么找? 1899781
邀请新用户注册赠送积分活动 947944
科研通“疑难数据库(出版商)”最低求助积分说明 850582