The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.

人工智能 深度学习 计算机科学 机器学习 循环神经网络 卷积神经网络 深信不疑网络 领域(数学) 水准点(测量) 强化学习 人工神经网络 大地测量学 数学 纯数学 地理
作者
Zahangir Alom,Tarek M. Taha,Christopher Yakopcic,Stefan Westberg,Paheding Sidike,Mst Shamima Nasrin,Brian C. Van Essen,Abdul Ahad S. Awwal,Vijayan K. Asari
出处
期刊:Cornell University - arXiv 被引量:68
摘要

Deep learning has demonstrated tremendous success in variety of application domains in the past few years. This new field of machine learning has been growing rapidly and applied in most of the application domains with some new modalities of applications, which helps to open new opportunity. There are different methods have been proposed on different category of learning approaches, which includes supervised, semi-supervised and un-supervised learning. The experimental results show state-of-the-art performance of deep learning over traditional machine learning approaches in the field of Image Processing, Computer Vision, Speech Recognition, Machine Translation, Art, Medical imaging, Medical information processing, Robotics and control, Bio-informatics, Natural Language Processing (NLP), Cyber security, and many more. This report presents a brief survey on development of DL approaches, including Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) including Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). In addition, we have included recent development of proposed advanced variant DL techniques based on the mentioned DL approaches. Furthermore, DL approaches have explored and evaluated in different application domains are also included in this survey. We have also comprised recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys have published on Deep Learning in Neural Networks [1, 38] and a survey on RL [234]. However, those papers have not discussed the individual advanced techniques for training large scale deep learning models and the recently developed method of generative models [1].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shipeng发布了新的文献求助10
刚刚
cchi发布了新的文献求助10
1秒前
1秒前
illusion完成签到,获得积分10
1秒前
蛙鼠兔完成签到,获得积分10
2秒前
金22完成签到,获得积分10
3秒前
研友_Z7WQzZ发布了新的文献求助10
3秒前
SYLH应助2316953734采纳,获得10
3秒前
小瑞完成签到,获得积分10
4秒前
研友_ED5GK发布了新的文献求助10
4秒前
kakafan发布了新的文献求助10
5秒前
5秒前
CodeCraft应助鱼在哪儿采纳,获得10
5秒前
CyrusSo524应助情殇采纳,获得10
6秒前
Su发布了新的文献求助10
6秒前
7秒前
Shipeng完成签到,获得积分20
9秒前
小羊烧鸡完成签到 ,获得积分10
9秒前
鱿鱼完成签到,获得积分10
9秒前
无名之辈完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
南风发布了新的文献求助10
12秒前
12秒前
水本无忧87完成签到,获得积分10
12秒前
13秒前
旺仔应助小新的石斛采纳,获得10
13秒前
CipherSage应助IVY1300采纳,获得10
13秒前
000发布了新的文献求助10
14秒前
heyuan1001完成签到,获得积分10
14秒前
14秒前
所所应助学术小白w采纳,获得10
15秒前
danna完成签到,获得积分10
15秒前
无聊的月饼完成签到 ,获得积分10
15秒前
雨醉东风发布了新的文献求助10
15秒前
16秒前
NIKI发布了新的文献求助10
16秒前
端庄一刀完成签到 ,获得积分10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841415
求助须知:如何正确求助?哪些是违规求助? 3383528
关于积分的说明 10530178
捐赠科研通 3103621
什么是DOI,文献DOI怎么找? 1709337
邀请新用户注册赠送积分活动 823110
科研通“疑难数据库(出版商)”最低求助积分说明 773816