抗菌肽
工作流程
大肠杆菌
计算生物学
人工智能
序列空间
生物
合成生物学
序列(生物学)
计算机科学
抗菌剂
化学空间
组合化学
算法
药物发现
化学
生物信息学
生物化学
数学
基因
微生物学
巴拿赫空间
数据库
纯数学
作者
Mari Yoshida,Trevor Hinkley,Soichiro Tsuda,Yousef M. Abul‐Haija,Roy T. McBurney,Vladislav Kulikov,Jennifer S. Mathieson,Sabrina Galiñanes Reyes,M. D. Luque de Castro,Leroy Cronin
出处
期刊:Chem
[Elsevier BV]
日期:2018-02-08
卷期号:4 (3): 533-543
被引量:134
标识
DOI:10.1016/j.chempr.2018.01.005
摘要
Summary We present a proof-of-concept methodology for efficiently optimizing a chemical trait by using an artificial evolutionary workflow. We demonstrate this by optimizing the efficacy of antimicrobial peptides (AMPs). In particular, we used a closed-loop approach that combines a genetic algorithm, machine learning, and in vitro evaluation to improve the antimicrobial activity of peptides against Escherichia coli . Starting with a 13-mer natural AMP, we identified 44 highly potent peptides, achieving up to a ca. 160-fold increase in antimicrobial activity within just three rounds of experiments. During these experiments, the conformation of the peptides selected was changed from a random coil to an α-helical form. This strategy not only establishes the potential of in vitro molecule evolution using an algorithmic genetic system but also accelerates the discovery of antimicrobial peptides and other functional molecules within a relatively small number of experiments, allowing the exploration of broad sequence and structural space.
科研通智能强力驱动
Strongly Powered by AbleSci AI