Effective Search in Rugged Performance Landscapes: A Review and Outlook

相互依存 相关性(法律) 计算机科学 管理科学 构造(python库) 过程(计算) 经验证据 创业 战略管理 实证研究 知识管理 数据科学 社会学 营销 业务 认识论 经济 政治学 社会科学 哲学 财务 法学 程序设计语言 操作系统
作者
Oliver Baumann,Jens Schmidt,Nils Stieglitz
出处
期刊:Journal of Management [SAGE Publishing]
卷期号:45 (1): 285-318 被引量:128
标识
DOI:10.1177/0149206318808594
摘要

The creation of novel strategies, the pursuit of entrepreneurial opportunities, and the development of new technologies, capabilities, products, or business models all involve solving complex problems that require making a large number of highly interdependent choices. The challenge that complex problems pose to boundedly rational managers—the need to find a high-performing combination of interdependent choices—is akin to identifying a high peak on a rugged performance “landscape” that managers must discover through sequential search. Building on the NK model that Levinthal introduced into the management literature in 1997, scholars have used simulation methods to construct performance landscapes and examine various aspects of effective search processes. We review this literature to identify common themes and mechanisms that may be relevant in different managerial contexts. Based on a systematic analysis of 71 simulation studies published in leading management journals since 1997, we identify six themes: learning modes, problem decomposition, cognitive representations, temporal dynamics, distributed search, and search under competition. We explain the mechanisms behind the results and map all of the simulation articles to the themes. In addition, we provide an overview of relevant empirical studies and discuss how empirical and formal work can be fruitfully combined. Our review is of particular relevance for scholars in strategy, entrepreneurship, or innovation who conduct empirical research and apply a process lens. More broadly, we argue that important insights can be gained by linking the notion of search in rugged performance landscapes to practitioner-oriented practices and frameworks, such as lean startup or design thinking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
hamster发布了新的文献求助20
2秒前
wu完成签到,获得积分20
2秒前
陈川杰应助谷粱靖柔采纳,获得10
3秒前
完美世界应助wangjingni采纳,获得10
3秒前
.。。发布了新的文献求助20
4秒前
4秒前
橘子的角动量完成签到,获得积分10
4秒前
岑崟关注了科研通微信公众号
4秒前
星海完成签到,获得积分10
4秒前
发生了什么树完成签到,获得积分10
5秒前
5秒前
拿云发布了新的文献求助10
5秒前
6秒前
Seiswan发布了新的文献求助10
6秒前
6秒前
yanzu发布了新的文献求助10
6秒前
天天快乐应助幸福萝采纳,获得10
6秒前
文艺裘发布了新的文献求助10
6秒前
英姑应助博弈春秋采纳,获得10
7秒前
7秒前
科目三应助Lyd采纳,获得10
7秒前
秘密但东发布了新的文献求助10
9秒前
9秒前
9秒前
和风完成签到 ,获得积分10
10秒前
yi111发布了新的文献求助10
10秒前
10秒前
隐形曼青应助莉莉子采纳,获得10
10秒前
11秒前
12秒前
笨笨忘幽发布了新的文献求助30
12秒前
sun发布了新的文献求助10
12秒前
完美世界应助苏苏采纳,获得10
13秒前
13秒前
饼干发布了新的文献求助10
14秒前
anna1992发布了新的文献求助10
14秒前
王某某发布了新的文献求助10
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050849
求助须知:如何正确求助?哪些是违规求助? 3589103
关于积分的说明 11405511
捐赠科研通 3315331
什么是DOI,文献DOI怎么找? 1823740
邀请新用户注册赠送积分活动 895581
科研通“疑难数据库(出版商)”最低求助积分说明 816894