亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease

痴呆 计算机科学 认知障碍 磁共振成像 人工智能 卷积神经网络 集成学习 深度学习 疾病 认知 机器学习 模式识别(心理学) 神经科学 医学 病理 放射科 心理学
作者
Hongfei Wang,Yanyan Shen,Shuqiang Wang,Tengfei Xiao,Liming Deng,Xiangyu Wang,Xinyan Zhao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:333: 145-156 被引量:218
标识
DOI:10.1016/j.neucom.2018.12.018
摘要

Automatic diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) from 3D brain magnetic resonance (MR) images play an important role in the early treatment of dementia disease. Deep learning architectures can extract potential features of dementia disease and capture brain anatomical changes from MRI scans. Given the high dimension and complex features of the 3D medical images, computer-aided diagnosis is still confronted with challenges. Firstly, compared with the number of learnable parameters, the number of training samples is very limited, which can cause overfitting problems. Secondly, the deepening of the network layer makes gradient information gradually weaken and even disappears in the process of transmission, resulting in mode collapse. This chapter proposed an ensemble of 3D densely connected convolutional networks for AD and MCI diagnosis from 3D MRIs. Dense connections were introduced to maximize the information flow, where each layer connects with all subsequent layers directly. Bottleneck layers and transition layers are also employed to reduce parameters and lead to more compact models. Then the probability-based fusion method was employed to combine 3D-DenseNets with different architectures. Extensive experiments were conducted to analyze the performance of 3D-DenseNet with different hyperparameters and architectures. Superior performance of the proposed model was demonstrated on ADNI dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
Invincible发布了新的文献求助10
39秒前
李爱国应助讷讷呐啊采纳,获得10
53秒前
1分钟前
讷讷呐啊发布了新的文献求助10
1分钟前
孤独君浩完成签到 ,获得积分20
1分钟前
1分钟前
讷讷呐啊完成签到,获得积分10
1分钟前
1分钟前
星辰大海应助llll采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
阳光发布了新的文献求助10
1分钟前
scm应助阳光采纳,获得10
2分钟前
牧沛凝完成签到 ,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
wanci应助有魅力的半蕾采纳,获得10
2分钟前
3分钟前
桐桐应助冷傲路灯采纳,获得30
3分钟前
围城完成签到 ,获得积分10
3分钟前
雪白元风完成签到 ,获得积分10
3分钟前
3分钟前
zhuuuuuuu完成签到,获得积分10
3分钟前
隐形曼青应助zhuuuuuuu采纳,获得10
3分钟前
leslie完成签到 ,获得积分10
4分钟前
4分钟前
沉醉的中国钵完成签到,获得积分10
4分钟前
4分钟前
zhuuuuuuu发布了新的文献求助10
4分钟前
wykion完成签到,获得积分0
4分钟前
阿怪12333完成签到 ,获得积分10
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
YifanWang应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得20
5分钟前
Eatanicecube完成签到,获得积分10
5分钟前
5分钟前
情怀应助yangjoy采纳,获得10
6分钟前
星辰大海应助llsssyy采纳,获得10
7分钟前
Forizix完成签到,获得积分10
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837395
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509877
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552