HMGB1
败血症
PI3K/AKT/mTOR通路
脐静脉
药理学
脂多糖
肿瘤坏死因子α
血红素加氧酶
医学
MAPK/ERK通路
化学
血红素
炎症
生物
信号转导
免疫学
生物化学
体外
酶
作者
Sumin Yang,Wonhwa Lee,Bong-Seon Lee,Changhun Lee,Eui Kyun Park,Sae‐Kwang Ku,Jong‐Sup Bae
标识
DOI:10.1142/s0192415x19500320
摘要
High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. We tested the hypothesis that aloin induces sirtuin 1 (SIRT1) and heme oxygenase (HO)-1, which inhibit HMGB1 release in lipopolysaccharide (LPS)-stimulated cells, thereby inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. Aloin was administered after LPS or HMGB1 challenge, and the antiseptic activity of aloin was determined from measurements of permeability, activation of pro-inflammatory proteins and production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. Aloin significantly reduced HMGB1 release in LPS-activated HUVECs via SIRT1-mediated HMGB1 deacetylation and the PI3K/Nrf2/heme oxygenase (HO)-1 signaling axis. Aloin also suppressed the production of tumor necrosis factor (TNF)-[Formula: see text] and interleukin (IL)-6, as well as the activation of nuclear factor (NF)-[Formula: see text]B and extracellular signal-regulated kinase 1/2 (ERK 1/2) by HMGB1. Moreover, aloin restored HMGB1-mediated vascular disruption and inhibited vascular hyperpermeability in mice. In addition, treatment with aloin reduced the CLP-induced release of HMGB1, sepsis-related mortality and tissue injury in vivo. Our results suggest that aloin reduces HMGB1 release and sepsis-related mortality by activating SIRT1 and PI3K/Nrf2/HO-1 signals, indicating that aloin has potential for the treatment of sepsis.
科研通智能强力驱动
Strongly Powered by AbleSci AI