吸附
咪唑
选择性
环己烷
共价键
苯
多孔性
共价有机骨架
三嗪
化学工程
吸附
金属有机骨架
化学
有机化学
高分子化学
催化作用
工程类
作者
Prasenjit Das,Sanjay K. Mandal
标识
DOI:10.1021/acs.chemmater.8b04683
摘要
Porous nitrogen-rich covalent organic frameworks (COFs) are most challenging materials for selective CO2 capture, separation, and conversion for a substantive impact on the environment and clean energy application. On the other hand, separation of industrial cyclic congeners (benzene/cyclohexane) by the host–guest interaction through π-electron-rich and -deficient centers in a COF is the key. On the basis of the strategic design, a triazine-based benz-bis(imidazole)-bridged COF (TBICOF) has been synthesized under polycondensation conditions and structurally characterized by various analytical techniques. Because of the presence of a benz-bis(imidazole) ring, TBICOF exhibits permanent stability and porosity in the presence of acid and base monitored by the wide-angle X-ray pattern and N2 sorption studies. The enhanced CO2 uptake of 377.14 cm3 g–1 (73.4 wt %) at 195 K confirms its high affinity toward the framework. CO2 sorption is highly selective over N2 and CH4 because of very strong interactions between CO2 and triazine and benz-bis(imidazole)-functionalized pore walls of TBICOF as clearly evident from the isosteric heat of adsorption and ideal adsorbed solution theory calculation, which is higher than other reported functionalized metal–organic frameworks or COFs. Interestingly, TBICOF also behaves as a heterogeneous organocatalyst for chemical fixation of CO2 into cyclic carbonates under ambient conditions. The π-electron-deficient triazine and benz-bis(imidazole) moieties have been utilized for selective sorption and separation of benzene (641.9 cm3 g–1) over cyclohexane (186.2 cm3 g–1). Computational studies based on density functional theory and grand canonical Monte Carlo molecular simulations further support the selectivity of CO2 (over N2 and CH4) and benzene (over cyclohexane).
科研通智能强力驱动
Strongly Powered by AbleSci AI