A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations

环境科学 遥感 缩小尺度 卫星 时间分辨率 气象学 日循环 中分辨率成像光谱仪 数值天气预报 地理 降水 量子力学 物理 工程类 航空航天工程
作者
Xiaodong Zhang,Ji Zhou,Frank-M. Göttsche,Wenfeng Zhan,Shaomin Liu,Ruyin Cao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (7): 4670-4691 被引量:83
标识
DOI:10.1109/tgrs.2019.2892417
摘要

Land surface temperature (LST) is a key variable at the land-atmosphere boundary. For many research projects and applications an all-weather LST product at moderate spatial resolution (e.g., 1 km) would be highly useful, especially in frequently cloudy areas. Merging thermal infrared (TIR) and microwave (MW) observations is able to overcome shortcomings of single-source remote sensing to derive such an LST. However, in current merging methods, models adopted for downscaling MW LST fail to quantify the effect of temporal variation of LST. Thus, accuracy of the merged LST can be deteriorated and therefore remain a major impediment for these methods to be generalized over large areas. In this context, we propose a new practical method to merge TIR and MW observations from a perspective of decomposition of LST in temporal dimension. The physical basis of the method is decomposing LST into three temporal components: annual temperature cycle component, diurnal temperature cycle component prescribed by solar geometry, and weather temperature component driven by weather change. The method was applied to MODIS and AMSR-E/AMSR2 data to generate an 11-year record of 1-km all-weather LST over Northeast China: the resulting merged LST has an accuracy of 1.29-1.71 K when validated against in situ LST; besides, no obvious differences in accuracy of the merged LST were found between clear-sky and unclear-sky conditions. Furthermore, the proposed method outperforms the previous method in both accuracy and image quality, indicating its good capability to generate daily 1-km all-weather LST, which will benefit continuous monitoring of earth's surface temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博士发布了新的文献求助10
1秒前
六氟合铂酸氙完成签到 ,获得积分10
1秒前
2秒前
瞿采枫完成签到 ,获得积分10
2秒前
浮生完成签到 ,获得积分10
3秒前
4秒前
WD完成签到,获得积分10
4秒前
5秒前
jkaaa完成签到,获得积分10
7秒前
lili完成签到 ,获得积分10
8秒前
科研小虫发布了新的文献求助10
8秒前
司空起眸发布了新的文献求助10
9秒前
pwang_ecust完成签到,获得积分10
9秒前
myduty完成签到 ,获得积分10
10秒前
Youlu发布了新的文献求助10
10秒前
煜琪完成签到 ,获得积分10
12秒前
维尔完成签到,获得积分10
14秒前
14秒前
清爽的诗云完成签到 ,获得积分10
15秒前
流子完成签到 ,获得积分10
15秒前
sos完成签到,获得积分10
16秒前
爱笑半雪完成签到,获得积分10
16秒前
langbuyu完成签到,获得积分10
17秒前
Grace完成签到,获得积分10
17秒前
闪闪的夜阑完成签到,获得积分10
18秒前
k001boyxw完成签到,获得积分10
18秒前
lilylian完成签到,获得积分10
19秒前
wwl完成签到,获得积分10
23秒前
冷傲凝琴发布了新的文献求助10
24秒前
冷静傲丝完成签到 ,获得积分10
24秒前
舒服的鱼完成签到 ,获得积分10
24秒前
清浅溪完成签到 ,获得积分10
29秒前
Liang完成签到,获得积分10
30秒前
Agnesma完成签到,获得积分10
31秒前
传奇3应助zhishiyanhua采纳,获得10
32秒前
谨慎纸飞机完成签到,获得积分10
33秒前
冷傲凝琴完成签到,获得积分10
33秒前
dunhuang完成签到,获得积分10
33秒前
shepherd完成签到,获得积分10
34秒前
慕青应助科研小虫采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859