亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PSASL: Pixel-Level and Superpixel-Level Aware Subspace Learning for Hyperspectral Image Classification

高光谱成像 像素 子空间拓扑 模式识别(心理学) 人工智能 计算机科学 判别式 数学 正规化(语言学)
作者
Jie Mei,Yuebin Wang,Liqiang Zhang,Bing Zhang,Suhong Liu,Panpan Zhu,Yingchao Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (7): 4278-4293 被引量:28
标识
DOI:10.1109/tgrs.2018.2890508
摘要

The performance of hyperspectral image (HSI) classification relies on the pixel information obtained from hundreds of contiguous and narrow spectral bands. Existing approaches, however, are limited to exploit an appropriate latent subspace for data representation within the pixel-level or superpixel-level. To utilize spectral information and spatial correlation among pixels in HSI and avoid the "salt-and-pepper" problem generated in the pixel-based HSI classification, a novel pixel-level and superpixel-level aware subspace learning method called PSASL is developed. The PSASL constructs the subspace learning framework based on the reconstruction independent component analysis algorithm. The spectral–spatial graph regularization and label space regularization are developed as the pixel-level constraints. To avoid the "salt-and-pepper" problem generated in the pixel-based classification methods, superpixel-level constraints are introduced for integrating the data representations defined in the subspace and class probabilities of the pixels in the same superpixel. The subspace learning and the pixel-level regularization are combined with the superpixel-level regularization to form a unified objective function. The solution to the objective function is efficiently achieved by employing a customized iterative algorithm, and it converges very fast. A discriminative data representation and a universal multiclass classifier are learned simultaneously. We test the PSASL on three widely used HSI data sets. Experimental results demonstrate the superior performance of our method over many recently proposed methods in HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咔敏完成签到 ,获得积分10
6秒前
8秒前
10秒前
熊奎懿发布了新的文献求助10
11秒前
汉堡包应助HelenZ采纳,获得10
14秒前
赘婿应助熊奎懿采纳,获得10
36秒前
科研通AI2S应助熊奎懿采纳,获得10
36秒前
45秒前
热情依白发布了新的文献求助10
51秒前
嵇元容完成签到,获得积分10
52秒前
完美的海完成签到 ,获得积分10
54秒前
蜗牛完成签到,获得积分20
1分钟前
1分钟前
BowieHuang应助热情依白采纳,获得10
1分钟前
HelenZ发布了新的文献求助10
1分钟前
Bunny完成签到 ,获得积分10
1分钟前
慕青应助_ban采纳,获得10
1分钟前
1分钟前
科研通AI2S应助清爽的冷荷采纳,获得10
1分钟前
1分钟前
1分钟前
实验室应助Siren采纳,获得30
1分钟前
上官若男应助熊奎懿采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
酷波er应助Lauren采纳,获得10
1分钟前
1分钟前
深情安青应助heew采纳,获得10
1分钟前
_ban发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
heew发布了新的文献求助10
2分钟前
nooooorae应助Siren采纳,获得30
2分钟前
大模型应助曙丽盼采纳,获得10
2分钟前
lu发布了新的文献求助10
2分钟前
大胆傲芙发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
曙丽盼发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529026
求助须知:如何正确求助?哪些是违规求助? 4618307
关于积分的说明 14562404
捐赠科研通 4557247
什么是DOI,文献DOI怎么找? 2497430
邀请新用户注册赠送积分活动 1477677
关于科研通互助平台的介绍 1448993