计算机科学
编码
利用
情态动词
嵌入
身份(音乐)
特征(语言学)
鉴定(生物学)
人工智能
自然语言
自然语言处理
上下文图像分类
图像(数学)
机器学习
语言学
声学
物理
哲学
基因
生物
化学
高分子化学
植物
生物化学
计算机安全
作者
Yuyu Wang,Chunjuan Bo,Dong Wang,Shuang Wang,Yunwei Qi,Huchuan Lu
标识
DOI:10.1109/icassp.2019.8682456
摘要
In this work, we develop an effective person search algorithm with natural language descriptions. The contributions of this work mainly include two aspects. First, we design a baseline language person search framework including three basic components: a deep CNN model to extract visual features, a bi-directional LSTM to encode language descriptions and the triplet loss to conduct cross-modal feature embedding. Second, we propose a novel mutually connected classification loss to fully exploit the identity-level information, which not only introduces the identification information into both image and language descriptions but also encourages the cross-modal classification probabilities of the same identity to be more similar. The experimental results on the CUHK-PEDES dataset demonstrate that our method achieves significantly better performance than other state-of-the-art algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI