In-VivoHyperspectral Human Brain Image Database for Brain Cancer Detection

高光谱成像 计算机科学 人工智能 VNIR公司 计算机视觉 脑癌 医学影像学 模式识别(心理学) 癌症 医学 内科学
作者
Himar Fabelo,Samuel Ortega,Adam Szołna,Diederik Bulters,Juan F. Piñeiro,Silvester Kabwama,Aruma J-O’Shanahan,Harry Bulstrode,Sara Bisshopp,B. Ravi Kiran,Daniele Ravì,Raquel Lazcano,Daniel Madroñal,Coralia Sosa,Carlos Espino,Mariano Márquez,María de la Luz Plaza,Rafael Camacho,David Carrera-Villacrés,María Antonia Gil Hernández
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 39098-39116 被引量:143
标识
DOI:10.1109/access.2019.2904788
摘要

The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡然葶完成签到 ,获得积分10
1秒前
落瑾玘发布了新的文献求助10
1秒前
Tong发布了新的文献求助10
2秒前
3秒前
LXY发布了新的文献求助10
3秒前
4秒前
5秒前
TYW发布了新的文献求助10
5秒前
CipherSage应助F光采纳,获得10
5秒前
琳琳完成签到,获得积分20
6秒前
陈晗予完成签到,获得积分10
6秒前
8秒前
韦如发布了新的文献求助10
9秒前
sailor2k发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
12秒前
Owen应助HHH采纳,获得10
12秒前
12秒前
沐沐溪三清完成签到,获得积分10
13秒前
英俊的铭应助bdJ采纳,获得10
13秒前
14秒前
15秒前
852应助狐尾采纳,获得10
15秒前
星辰大海应助青柠采纳,获得10
16秒前
18秒前
18秒前
辰宸完成签到,获得积分10
19秒前
桐桐应助123采纳,获得10
20秒前
端一眼发布了新的文献求助10
20秒前
21秒前
F光发布了新的文献求助10
21秒前
22秒前
科研通AI6应助于你无瓜采纳,获得10
22秒前
22秒前
22秒前
会撒娇的含巧完成签到,获得积分10
23秒前
浮游应助哒布6采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453983
求助须知:如何正确求助?哪些是违规求助? 4561429
关于积分的说明 14282591
捐赠科研通 4485414
什么是DOI,文献DOI怎么找? 2456715
邀请新用户注册赠送积分活动 1447394
关于科研通互助平台的介绍 1422730