A novel hybrid deep learning scheme for four-class motor imagery classification

计算机科学 人工智能 运动表象 卷积神经网络 深度学习 脑-机接口 模式识别(心理学) 人工神经网络 任务(项目管理) 脑电图 滤波器(信号处理) 信号(编程语言) 计算机视觉 精神科 经济 管理 程序设计语言 心理学
作者
Ruilong Zhang,Qun Zong,Liqian Dou,Xinyi Zhao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (6): 066004-066004 被引量:139
标识
DOI:10.1088/1741-2552/ab3471
摘要

Objective. Learning the structures and unknown correlations of a motor imagery electroencephalogram (MI-EEG) signal is important for its classification. It is also a major challenge to obtain good classification accuracy from the increased number of classes and increased variability from different people. In this study, a four-class MI task is investigated. Approach. An end-to-end novel hybrid deep learning scheme is developed to decode the MI task from EEG data. The proposed algorithm consists of two parts: a. A one-versus-rest filter bank common spatial pattern is adopted to preprocess and pre-extract the features of the four-class MI signal. b. A hybrid deep network based on the convolutional neural network and long-term short-term memory network is proposed to extract and learn the spatial and temporal features of the MI signal simultaneously. Main results. The main contribution of this paper is to propose a hybrid deep network framework to improve the classification accuracy of the four-class MI-EEG signal. The hybrid deep network is a subject-independent shared neural network, which means it can be trained by using the training data from all subjects to form one model. Significance. The classification performance obtained by the proposed algorithm on brain–computer interface (BCI) competition IV dataset 2a in terms of accuracy is 83% and Cohen's kappa value is 0.80. Finally, the shared hybrid deep network is evaluated by every subject respectively, and the experimental results illustrate that the shared neural network has satisfactory accuracy. Thus, the proposed algorithm could be of great interest for real-life BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丑丑虎发布了新的文献求助10
刚刚
能干的邹发布了新的文献求助10
刚刚
科研F5完成签到,获得积分10
1秒前
xx发布了新的文献求助10
2秒前
李健的粉丝团团长应助li采纳,获得10
3秒前
细心的白凡完成签到,获得积分20
3秒前
4秒前
jj发布了新的文献求助10
4秒前
starry完成签到 ,获得积分10
5秒前
打打应助aa采纳,获得30
6秒前
6秒前
6秒前
傲娇的烨霖完成签到,获得积分10
7秒前
Wency发布了新的文献求助30
9秒前
gaberella发布了新的文献求助20
9秒前
主旋律发布了新的文献求助10
10秒前
核桃应助陶醉的雪柳采纳,获得10
11秒前
lightgo应助陶醉的雪柳采纳,获得10
11秒前
orixero应助彪壮的绮烟采纳,获得10
12秒前
12秒前
12秒前
jj完成签到,获得积分10
13秒前
14秒前
研友_VZG7GZ应助hu采纳,获得10
14秒前
彭于晏应助细心的白凡采纳,获得10
14秒前
14秒前
nenoaowu发布了新的文献求助10
16秒前
li发布了新的文献求助10
17秒前
椿·发布了新的文献求助10
17秒前
mianbao完成签到,获得积分10
17秒前
Hxq完成签到 ,获得积分10
18秒前
20秒前
20秒前
透心凉1987发布了新的文献求助10
21秒前
积极的安青应助yuyu采纳,获得10
22秒前
22秒前
顾矜应助李敏之采纳,获得10
23秒前
24秒前
jmei发布了新的文献求助10
24秒前
TXin完成签到 ,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409