反常扩散
扩散
指数
弹道
均方位移
循环神经网络
统计物理学
流离失所(心理学)
斑点图案
人工神经网络
计算机科学
物理
人工智能
量子力学
心理学
知识管理
语言学
哲学
创新扩散
心理治疗师
分子动力学
作者
Stefano Bo,Falko Schmidt,Ralf Eichhorn,Giovanni Volpe
出处
期刊:Physical review
[American Physical Society]
日期:2019-07-17
卷期号:100 (1)
被引量:83
标识
DOI:10.1103/physreve.100.010102
摘要
Anomalous diffusion occurs in many physical and biological phenomena, when the growth of the mean squared displacement (MSD) with time has an exponent different from one. We show that recurrent neural networks (RNNs) can efficiently characterize anomalous diffusion by determining the exponent from a single short trajectory, outperforming the standard estimation based on the MSD when the available data points are limited, as is often the case in experiments. Furthermore, the RNNs can handle more complex tasks where there are no standard approaches, such as determining the anomalous diffusion exponent from a trajectory sampled at irregular times, and estimating the switching time and anomalous diffusion exponents of an intermittent system that switches between different kinds of anomalous diffusion. We validate our method on experimental data obtained from subdiffusive colloids trapped in speckle light fields and superdiffusive microswimmers.
科研通智能强力驱动
Strongly Powered by AbleSci AI