SOSO Boosting of the K-SVD Denoising Algorithm for Enhancing Fault-Induced Impulse Responses of Rolling Element Bearings

Boosting(机器学习) 奇异值分解 脉冲(物理) 残余物 降噪 算法 噪音(视频) 计算机科学 模式识别(心理学) 数学 人工智能 物理 量子力学 图像(数学)
作者
Ming Zeng,Zhen Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:67 (2): 1282-1292 被引量:39
标识
DOI:10.1109/tie.2019.2898583
摘要

The key to successful detection of a localized bearing fault lies in extracting fault-induced impulse responses. Unfortunately, these responses are often contaminated by background noise. The popular K-singular value decomposition (K-SVD) denoising algorithm can be used to extract impulse responses from noise, but it may obtain weak impulse responses against reliable fault detection. An SOSO boosting technique is proposed to improve the performance of the K-SVD denoising algorithm. Given an initial denoised signal, this paper proposes iteratively repeating the following SOSO boosting procedure: 1) Strengthen the underlying signal by adding the previous denoised signal to the noisy input signal; 2) Operate the K-SVD denoising algorithm on the strengthened signal; 3) Subtract the previous denoised signal from the restored signal-strengthened outcome; and 4) Operate the modified K-SVD denoising algorithm again on the resulting signal after the subtraction. The last step, i.e., the secondary denoising step, plays a crucial role in preventing the enhancement of the residual noise that originates from the first denoised result. The results of numerical and experimental studies show that the SOSO-based K-SVD denoising algorithm not only enhances weak impulse responses significantly but also reduces potential residual noise effectively compared to the SOS-based and the original K-SVD denoising algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang完成签到,获得积分20
刚刚
刚刚
draven007发布了新的文献求助20
1秒前
xh完成签到 ,获得积分10
1秒前
wxj发布了新的文献求助10
1秒前
2秒前
凉白开发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
科研小桶发布了新的文献求助10
3秒前
3秒前
jeitt完成签到,获得积分10
3秒前
yuan应助火星上妙梦采纳,获得10
3秒前
4秒前
焱焱不忘完成签到 ,获得积分10
4秒前
EED关闭了EED文献求助
4秒前
搜集达人应助应化打工人采纳,获得10
4秒前
所所应助闪闪绮露采纳,获得10
5秒前
You完成签到,获得积分10
6秒前
6秒前
张豪杰完成签到,获得积分10
6秒前
6秒前
Estrella完成签到,获得积分10
7秒前
丰丰完成签到,获得积分10
8秒前
搜集达人应助hhz采纳,获得10
9秒前
hugeyoung完成签到,获得积分10
9秒前
10秒前
10秒前
setfgrew完成签到,获得积分10
12秒前
yoyo完成签到,获得积分10
12秒前
Hana发布了新的文献求助100
12秒前
fisher完成签到 ,获得积分10
12秒前
12秒前
科研通AI5应助Hui采纳,获得10
13秒前
kryptonite完成签到 ,获得积分10
14秒前
pluto应助凉白开采纳,获得10
14秒前
JAMES发布了新的文献求助10
14秒前
15秒前
decdier发布了新的文献求助10
15秒前
Owen应助凡生采纳,获得10
16秒前
ShengzhangLiu发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846