Privacy-preserving governmental data publishing: A fog-computing-based differential privacy approach

差别隐私 计算机科学 数据发布 隐私软件 云计算 隐私保护 信息隐私 计算机安全 互联网隐私 设计隐私 出版 大数据 集合(抽象数据类型) 数据挖掘 法学 操作系统 程序设计语言 政治学
作者
Chunhui Piao,Yajuan Shi,Jiaqi Yan,Changyou Zhang,Liping Liu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:90: 158-174 被引量:38
标识
DOI:10.1016/j.future.2018.07.038
摘要

With the growing availability of public open data, the protection of citizens’ privacy has become a vital issue for governmental data publishing. However, there are a large number of operational risks in the current government cloud platforms. When the cloud platform is attacked, most existing privacy protection models for data publishing cannot resist the attacks if the attacker has prior background knowledge. Potential attackers may gain access to the published statistical data, and identify specific individual’s background information, which may cause the disclosure of citizens’ private information. To address this problem, we propose a fog-computing-based differential privacy approach for privacy-preserving data publishing in this paper. We discuss the risk of citizens’ privacy disclosure related to governmental data publishing, and present a differential privacy framework for publishing governmental statistical data based on fog computing. Based on the framework, a data publishing algorithm using a MaxDiff histogram is developed, which can be used to realize the function of preserving user privacy based on fog computing. Applying the differential method, Laplace noises are added to the original data set, which prevents citizens’ privacy from disclosure even if attackers get strong background knowledge. According to the maximum frequency difference, the adjacent data bins are grouped, then the differential privacy histogram with minimum average error can be constructed. We evaluate the proposed approach by computational experiments based on the real data set of Philippine families’ income and expenditures provided by Kaggle. It shows that the proposed data publishing approach can not only effectively protect citizens’ privacy, but also reduce the query sensitivity and improve the utility of the data published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠一德完成签到,获得积分10
刚刚
坏苹果发布了新的文献求助10
1秒前
1秒前
2秒前
小样完成签到,获得积分10
3秒前
3秒前
4秒前
ww发布了新的文献求助200
4秒前
洪艳完成签到 ,获得积分10
4秒前
tingz发布了新的文献求助10
5秒前
5秒前
echo发布了新的文献求助10
5秒前
小样发布了新的文献求助10
6秒前
6秒前
JamesPei应助kagaminelen采纳,获得10
6秒前
何为会完成签到,获得积分10
6秒前
123小九完成签到,获得积分10
6秒前
小城旧事完成签到,获得积分10
7秒前
桃tao完成签到,获得积分20
8秒前
aa完成签到,获得积分10
8秒前
学无止境完成签到,获得积分10
8秒前
9秒前
9秒前
Youth发布了新的文献求助10
9秒前
orixero应助正直的魔镜采纳,获得10
9秒前
9秒前
无语的笑卉完成签到 ,获得积分10
9秒前
雪兔妹妹完成签到,获得积分10
10秒前
腰果虾仁发布了新的文献求助10
10秒前
万能图书馆应助yoyo采纳,获得10
10秒前
清爽夜雪发布了新的文献求助10
11秒前
斯文败类应助青青子衿采纳,获得10
11秒前
12秒前
一只鱼的故事完成签到,获得积分10
12秒前
kagaminelen完成签到,获得积分10
12秒前
雪饼完成签到,获得积分10
13秒前
T拐拐发布了新的文献求助10
13秒前
Sunnany完成签到,获得积分10
14秒前
14秒前
所所应助wzjs采纳,获得10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4205929
求助须知:如何正确求助?哪些是违规求助? 3740230
关于积分的说明 11773810
捐赠科研通 3410848
什么是DOI,文献DOI怎么找? 1871591
邀请新用户注册赠送积分活动 926667
科研通“疑难数据库(出版商)”最低求助积分说明 836739