Privacy-preserving governmental data publishing: A fog-computing-based differential privacy approach

差别隐私 计算机科学 数据发布 隐私软件 云计算 隐私保护 信息隐私 计算机安全 互联网隐私 设计隐私 出版 大数据 集合(抽象数据类型) 数据挖掘 法学 操作系统 程序设计语言 政治学
作者
Chunhui Piao,Yajuan Shi,Jiaqi Yan,Changyou Zhang,Liping Liu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:90: 158-174 被引量:38
标识
DOI:10.1016/j.future.2018.07.038
摘要

With the growing availability of public open data, the protection of citizens’ privacy has become a vital issue for governmental data publishing. However, there are a large number of operational risks in the current government cloud platforms. When the cloud platform is attacked, most existing privacy protection models for data publishing cannot resist the attacks if the attacker has prior background knowledge. Potential attackers may gain access to the published statistical data, and identify specific individual’s background information, which may cause the disclosure of citizens’ private information. To address this problem, we propose a fog-computing-based differential privacy approach for privacy-preserving data publishing in this paper. We discuss the risk of citizens’ privacy disclosure related to governmental data publishing, and present a differential privacy framework for publishing governmental statistical data based on fog computing. Based on the framework, a data publishing algorithm using a MaxDiff histogram is developed, which can be used to realize the function of preserving user privacy based on fog computing. Applying the differential method, Laplace noises are added to the original data set, which prevents citizens’ privacy from disclosure even if attackers get strong background knowledge. According to the maximum frequency difference, the adjacent data bins are grouped, then the differential privacy histogram with minimum average error can be constructed. We evaluate the proposed approach by computational experiments based on the real data set of Philippine families’ income and expenditures provided by Kaggle. It shows that the proposed data publishing approach can not only effectively protect citizens’ privacy, but also reduce the query sensitivity and improve the utility of the data published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Masetti1完成签到 ,获得积分10
1秒前
3秒前
laxnx完成签到,获得积分10
3秒前
8秒前
10秒前
科研通AI5应助小禾一定行采纳,获得30
11秒前
zhanghhsnow完成签到,获得积分10
12秒前
13秒前
15秒前
zx598376321完成签到,获得积分10
15秒前
Shawn完成签到,获得积分10
15秒前
15秒前
stefdee发布了新的文献求助10
16秒前
19秒前
乐乐应助qiulong采纳,获得10
21秒前
善学以致用应助stefdee采纳,获得10
21秒前
科研通AI5应助MRM采纳,获得10
21秒前
zengyiqiao发布了新的文献求助20
22秒前
峡星牙发布了新的文献求助30
22秒前
小马甲应助乔乔采纳,获得10
24秒前
26秒前
29秒前
feng完成签到,获得积分10
30秒前
31秒前
1111发布了新的文献求助10
31秒前
强健的绮琴完成签到,获得积分10
32秒前
于浩洋发布了新的文献求助10
33秒前
36秒前
36秒前
阿九发布了新的文献求助10
37秒前
科研通AI5应助小禾一定行采纳,获得10
37秒前
38秒前
小绵羊完成签到 ,获得积分10
39秒前
张晓天发布了新的文献求助10
40秒前
41秒前
1111完成签到,获得积分20
41秒前
fhz发布了新的文献求助20
41秒前
HI完成签到 ,获得积分10
45秒前
小淘气发布了新的文献求助10
45秒前
HE发布了新的文献求助10
46秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451