Fe3O4/Au binary nanocrystals: Facile synthesis with diverse structure evolution and highly efficient catalytic reduction with cyclability characteristics in 4-nitrophenol

纳米晶 材料科学 催化作用 纳米技术 化学工程 三元运算 化学 有机化学 计算机科学 工程类 程序设计语言
作者
Yanan Liu,Y.Y. Zhang,Qiangwei Kou,D.D. Wang,Donglai Han,Ziyang Lu,Y. Chen,Lei Chen,Yanrong Wang,Y.J. Zhang,Jinghai Yang,Guozhong Xing
出处
期刊:Powder Technology [Elsevier BV]
卷期号:338: 26-35 被引量:37
标识
DOI:10.1016/j.powtec.2018.06.037
摘要

Fe3O4/Au binary nanocrystals have been widely utilized in catalysis, biology, medicine and other fields due to their unique magnetic and optical properties. In the present work, diversely structured Fe3O4/Au core-satellite nanocubes and Fe3O4@Au core-shell nanocrystals are fabricated by a seed deposition and a seed-mediated growth process, respectively. The developed binary nanocrystals equipped with highly efficient and recyclable catalytic reduction characteristics for 4-nitrophenol (4-NP). Extensive x-ray diffraction and transmission electron microscopy studies demonstrate that the amount of Au seeds deposited onto the surfaces of Fe3O4 nanocubes increases with increasing the additive amount of Au seeds. Aiming at structure tailored engineering, Fe3O4@Au core-shell nanocrystals are formed when Fe3O4/Au-50 mL core-satellite nanocubes are chosen as a template for further coating with gold shell by seed-mediated growth. Moreover, the magnetic saturation is gradually weakened with increasing addition quantity of Au seeds. Importantly, 4-NP is employed as a model molecule to investigate the effect of developed Fe3O4/Au binary nanocrystals on the catalytic performance. The rate constant of Fe3O4/Au core-satellite nanocubes is higher than that of Fe3O4@Au core-shell nanocrystals because of distinctly different surface area-to-volume ratio of Au nanocrystals. Fe3O4/Au core-satellite nanocubes show good separation ability and reusability, which could be repeatedly applied for nearly complete reduction of 4-NP for at least six successive cycles. Such cost effective and recyclable catalyst provides a new material paradigm for environmental protection applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梦易生发布了新的文献求助10
刚刚
1秒前
joey完成签到,获得积分20
1秒前
陈飞飞发布了新的文献求助10
1秒前
张文康发布了新的文献求助10
1秒前
CCC完成签到,获得积分10
2秒前
诚心香寒发布了新的文献求助10
2秒前
2秒前
CodeCraft应助默默雨梅采纳,获得10
2秒前
3秒前
3秒前
852应助余丽娅采纳,获得10
4秒前
Always完成签到,获得积分10
4秒前
SGX发布了新的文献求助10
4秒前
4秒前
夏天的风发布了新的文献求助30
5秒前
5秒前
hwasaa发布了新的文献求助10
5秒前
5秒前
Jasper应助chenyu采纳,获得10
6秒前
MZP完成签到,获得积分10
6秒前
6秒前
潘潘婷发布了新的文献求助10
7秒前
汉堡包应助马小跳采纳,获得10
7秒前
7秒前
迟渡发布了新的文献求助10
8秒前
端庄的小蝴蝶完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
fffgz发布了新的文献求助10
9秒前
核桃发布了新的文献求助50
9秒前
猪血糕yu完成签到,获得积分10
9秒前
冷静的莞完成签到 ,获得积分10
10秒前
Foxxx323发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
茶叶生物化学 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828671
求助须知:如何正确求助?哪些是违规求助? 3371146
关于积分的说明 10466478
捐赠科研通 3090977
什么是DOI,文献DOI怎么找? 1700623
邀请新用户注册赠送积分活动 817954
科研通“疑难数据库(出版商)”最低求助积分说明 770618