Novel SERS labels: Rational design, functional integration and biomedical applications

化学 纳米技术 合理设计 组合化学 生化工程 材料科学 工程类
作者
Beibei Shan,Yuhan Pu,Yingfan Chen,Mengling Liao,Ming Li
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:371: 11-37 被引量:142
标识
DOI:10.1016/j.ccr.2018.05.007
摘要

Driven by the growing demand for healthcare and point-of-care test applications, next-generation diagnostic tools of diseases require sensing platforms that enable rapid, quantitative readout of analytes with excellent specificity and sensitivity. Although label-free detection permits simplicity, flexibility and high specificity, it has usually poor throughput, limited sensitivity and requires professional instrumentation. Label-based detection using optical labels overcomes many of these drawbacks and has been demonstrated to be an effective alternative for improved sensing performances. The current research focus has been directed towards innovating high-performance optical labels for ultrasensitive biosensing and disease diagnostics in place of conventional optical labels. Surface-enhanced Raman scattering (SERS) labels have proven to be excellent labels for biosensing because of their merits in many aspects, such as flexibility, less interference from biological matrices, high photostability, easy multiplex encoding, etc. These fantastic features make SERS labels particularly suitable for ultrasensitive detection of disease biomarkers in body fluids and targeted imaging of diseased cells and tissues, respectively. In this Review, we introduce the design and deployment of SERS labels for ultrasensitive detection, and summarize recent research progress in the development of SERS label-based sensing platforms and their applications in disease biomarker detection, targeted cellular imaging and spectroscopic detection of tumor lesions. First, we will discuss the design principles and comprehensive considerations of SERS labels, and the on-demand integration of functionalities. Next, we introduce the design of SERS sensing platforms on basis of SERS labels for ultrasensitive and selective detection of diverse pathology-related biomarkers, including proteins, nucleic acids, small molecules and inorganic ions. In addition, through the rational incorporation of targeting ligands on SERS labels, novel SERS probes are created for targeting near-infrared (NIR) imaging and spectroscopic detection of tumor, taking advantages of large NIR light penetration depth, high brightness, stability, etc. Our and other research efforts have demonstrated the promising potential of SERS label-based sensing platforms for detection of diverse circulating biomarkers for non-invasive disease diagnostics and deep-tissue spectroscopic detection of tumor. It is believed that this review will motivate further exploration of clinical applications of SERS labels in near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的半山关注了科研通微信公众号
刚刚
满眼星陈完成签到,获得积分20
1秒前
abc1122完成签到,获得积分10
1秒前
2秒前
2秒前
木头人完成签到,获得积分10
2秒前
3秒前
25jfren发布了新的文献求助10
3秒前
深情安青应助菠菜采纳,获得30
3秒前
3秒前
adamchris发布了新的文献求助30
4秒前
LLT驳回了zyyy应助
4秒前
诸葛藏藏完成签到,获得积分10
4秒前
4秒前
英姑应助lvolt采纳,获得10
4秒前
拼搏靖巧发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
诸葛藏藏发布了新的文献求助10
6秒前
griffon完成签到,获得积分10
7秒前
7秒前
zlzlzl发布了新的文献求助10
7秒前
巧克力完成签到,获得积分10
8秒前
阔达代芹完成签到,获得积分10
8秒前
大树完成签到 ,获得积分10
8秒前
logic完成签到 ,获得积分10
8秒前
harry发布了新的文献求助10
8秒前
8秒前
9秒前
corner发布了新的文献求助10
9秒前
9秒前
ui24完成签到 ,获得积分10
10秒前
10秒前
lwwwl发布了新的文献求助10
11秒前
lsy完成签到,获得积分10
11秒前
郁金香发布了新的文献求助10
11秒前
小胡完成签到,获得积分10
11秒前
罗明芳发布了新的文献求助10
12秒前
wwwwyyyy发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947698
求助须知:如何正确求助?哪些是违规求助? 4211427
关于积分的说明 13094063
捐赠科研通 3992630
什么是DOI,文献DOI怎么找? 2185617
邀请新用户注册赠送积分活动 1200950
关于科研通互助平台的介绍 1114477