Application of EfficientNet‐B0 and GRU‐based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions

阴道镜检查 鳞状上皮内病变 医学 人工智能 宫颈上皮内瘤变 计算机科学 宫颈癌 内科学 癌症
作者
Xiaoyue Chen,Xiaowen Pu,Zhirou Chen,Lanzhen Li,Kong‐Nan Zhao,Haichun Liu,Haiyan Zhu
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (7): 8690-8699 被引量:35
标识
DOI:10.1002/cam4.5581
摘要

Abstract Background Colposcopy is indispensable for the diagnosis of cervical lesions. However, its diagnosis accuracy for high‐grade squamous intraepithelial lesion (HSIL) is at about 50%, and the accuracy is largely dependent on the skill and experience of colposcopists. The advancement in computational power made it possible for the application of artificial intelligence (AI) to clinical problems. Here, we explored the feasibility and accuracy of the application of AI on precancerous and cancerous cervical colposcopic image recognition and classification. Methods The images were collected from 6002 colposcopy examinations of normal control, low‐grade squamous intraepithelial lesion (LSIL), and HSIL. For each patient, the original, Schiller test, and acetic‐acid images were all collected. We built a new neural network classification model based on the hybrid algorithm. EfficientNet‐b0 was used as the backbone network for the image feature extraction, and GRU(Gate Recurrent Unit)was applied for feature fusion of the three modes examinations (original, acetic acid, and Schiller test). Results The connected network classifier achieved an accuracy of 90.61% in distinguishing HSIL from normal and LSIL. Furthermore, the model was applied to “Trichotomy”, which reached an accuracy of 91.18% in distinguishing the HSIL, LSIL and normal control at the same time. Conclusion Our results revealed that as shown by the high accuracy of AI in the classification of colposcopic images, AI exhibited great potential to be an effective tool for the accurate diagnosis of cervical disease and for early therapeutic intervention in cervical precancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小aa16完成签到,获得积分10
1秒前
星辰大海应助iwhsgfes采纳,获得10
2秒前
Axel完成签到,获得积分10
2秒前
2秒前
勤恳元槐发布了新的文献求助10
3秒前
koukeika完成签到,获得积分10
3秒前
4秒前
5秒前
xij发布了新的文献求助10
6秒前
领导范儿应助123457采纳,获得10
8秒前
jitanxiang发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
科研通AI5应助淡然的蚂蚁采纳,获得10
12秒前
13秒前
乐观红牛完成签到,获得积分10
17秒前
干净幻梦完成签到,获得积分10
18秒前
遇上就这样吧应助pla采纳,获得50
19秒前
零下负七完成签到,获得积分10
21秒前
田様应助11号迪西馅饼采纳,获得10
21秒前
jenny发布了新的文献求助10
22秒前
wanci应助老黑采纳,获得10
22秒前
22秒前
pxin发布了新的文献求助10
23秒前
俭朴夜香发布了新的文献求助10
25秒前
franklylyly完成签到,获得积分10
25秒前
26秒前
xij完成签到,获得积分20
26秒前
29秒前
32秒前
33秒前
里海鱼发布了新的文献求助10
33秒前
英姑应助jenny采纳,获得10
35秒前
38秒前
afar完成签到 ,获得积分10
40秒前
42秒前
jenny完成签到,获得积分10
45秒前
王婧jjj发布了新的文献求助10
46秒前
乐观红牛发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648