Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 植物 医学 生物 病理
作者
Tetsuya Aikoh,Riko Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:80: 127845-127845 被引量:56
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
初a发布了新的文献求助10
1秒前
1秒前
2秒前
烟花应助YZ采纳,获得10
2秒前
2秒前
Ricky小强发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
星辰大海应助bitter采纳,获得10
4秒前
晨曦完成签到,获得积分10
4秒前
4秒前
萧萧落木天完成签到,获得积分10
4秒前
4秒前
小小新发布了新的文献求助10
4秒前
CodeCraft应助152522采纳,获得10
5秒前
安静的冰蓝完成签到 ,获得积分10
5秒前
布吉岛完成签到 ,获得积分10
6秒前
tingi完成签到 ,获得积分10
6秒前
HOAN应助Katyusha采纳,获得30
7秒前
无极微光应助chai采纳,获得20
7秒前
arT发布了新的文献求助10
7秒前
一壶古酒应助了一李采纳,获得50
7秒前
Rick发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
泽丶发布了新的文献求助10
9秒前
Miss发布了新的文献求助10
9秒前
leesc94完成签到,获得积分10
9秒前
Zlang应助13344采纳,获得10
9秒前
9秒前
曲秋白完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
yyq关闭了yyq文献求助
9秒前
yejian发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526